Alcamán-Arias, M. E., Pedrós-Alió, C., Tamames, J., et al., 2018. Diurnal Changes in Active Carbon and Nitrogen Pathways Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat. Frontiers in Microbiology, 9, 2353. https://doi.org/10.3389/fmicb.2018.02353 |
604-2 |
Bertics, V., Sohm, J., Treude, T., et al., 2010. Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Marine Ecology Progress Series, 409, 1–15. https://doi.org/10.3354/meps08639 |
Bolyen, E., Rideout, J. R., Dillon, M. R., et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852–857. https://doi.org/10.1038/s41587-019-0209-9 |
Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336. https://doi.org/10.1038/nmeth.f.303 |
Castenholz, R. W., Pierson, B. K., 2004. Ecology of Thermophilic Anoxygenic Phototrophs. In Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T. and Bauer, C. E., eds). Kluwer Academic Publishers, Dordrecht, 87–103. https://doi.org/10.1007/0-306-47954-0_5 |
De’ath, G. 2007., BOOSTED TREES FOR ECOLOGICAL MODELING AND PREDICTION. Ecology, 88(1): 243–251. https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 |
Edgar, R. C., Haas, B. J., Clemente, J. C., et al., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16) : 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 |
Eichner, M., Kranz, S. A., Rost, B., 2014. Combined effects of different CO 2 levels and N sources on the diazotrophic cyanobacterium Trichodesmium. Physiologia Plantarum, 152(2): 316–330. https://doi.org/10.1111/ppl.12172 |
Estrella Alcamán, M., Fernandez, C., Delgado, A., et al., 2015. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. The ISME Journal, 9(10): 2290–2303. https://doi.org/10.1038/ismej.2015.63 |
Feng, C., Yang J., Jiang H., 2018. Diversity and distribution of nitrogen-fixing Bacteria in two geothermal channels in Tengchong geothermal zone, Yunnan Province. Earth Science, 43(Suppl. 1):10-18. (in Chinese with English Abstract) https://doi.org/10.3799/dqkx.2018.911 |
Feng, K., Peng, X., Zhang, Z., et al., 2022. iNAP: An integrated network analysis pipeline for microbiome studies. iMeta, 1(2) : e13. https://doi.org/10.1002/imt2.13 |
Gaby, J. C., Buckley, D. H. 2012. A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase. PLoS ONE, 7(7): e42149. https://doi.org/10.1371/journal.pone.0042149 |
Gier, J., Sommer, S., Löscher, C. R., et al., 2016. Nitrogen fixation in sediments along a depth transect through the Peruvianoxygen minimum zone. Biogeosciences, 13(14): 4065–4080. https://doi.org/10.5194/bg-13-4065-2016 |
Gruber, N., Galloway, J. N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176) : 293–296. https://doi.org/10.1038/nature06592 |
Guo, Q., Kirk Nordstrom, D., Blaine McCleskey, R., 2014. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems. Journal of Volcanology and Geothermal Research, 288, 94–104. https://doi.org/10.1016/j.jvolgeores.2014.10.005 |
Guo, Q. and Wang, Y., 2012. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215–216, 61–73. https://doi.org/10.1016/j.jvolgeores.2011.12.003 |
Hall, J. R., Mitchell, K. R., Jackson-Weaver, O., et al., 2008. Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes. Applied and Environmental Microbiology, 74(15): 4910–4922. https://doi.org/10.1128/AEM.00233-08 |
824-9 |
Hamilton, T. L., Koonce, E., Howells, A., et al., 2014. Competition for Ammonia Influences the Structure of Chemotrophic Communities in Geothermal Springs. Applied and Environmental Microbiology, 80(2): 653–661. https://doi.org/10.1128/AEM.02577-13 |
Huang, Q., Dong, C. Z., Dong, R. M., et al., 2011. Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles, 15(5): 549–563. https://doi.org/10.1007/s00792-011-0386-z |
Jabir, T., Vipindas, P. V., Jesmi, Y., et al., 2021. Influence of environmental factors on benthic nitrogen fixation and role of sulfur reducing diazotrophs in a eutrophic tropical estuary. Marine Pollution Bulletin, 165, 112126. https://doi.org/10.1016/j.marpolbul.2021.112126 |
Jiang, Z., Li, P., Tu, J., et al., 2018. Arsenic in geothermal systems of Tengchong, China: Potential contamination on freshwater resources. International Biodeterioration & Biodegradation, 128, 28–35. https://doi.org/10.1016/j.ibiod.2016.05.013 |
Klatt, C. G., Liu, Z., Ludwig, M., et al., 2013. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. The ISME Journal, 7(9): 1775–1789. https://doi.org/10.1038/ismej.2013.52 |
177(89)90225-1 |
Lehnen, N., Marchant, H. K., Schwedt, A., et al., 2016. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Systematic and Applied Microbiology, 39(7): 476–483. https://doi.org/10.1016/j.syapm.2016.08.004 |
Li, R., Wu, G., Jones, B. Shi, T., 2020. Microbial fabrics of geyserites around hot spring pools in Daggyai, Tibet, China. Terra Nova, 32(5), 355–368. https://doi.org/10.1111/ter.12465 |
Lin, K.-H., Liao, B.-Y., Chang, H.-W., et al., 2015. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics. BMC Genomics, 16(1): 1029. https://doi.org/10.1186/s12864-015-2230-9 |
Liu, M., Guo, Q., Wu, G., et al., 2019. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China): Daggyai and Quzhuomu. Geothermics, 82, 190–202. https://doi.org/10.1016/j.geothermics.2019.06.009 |
Loiacono, S. T., Meyer‐Dombard, D. R., Havig, J. R., et al., 2012. Evidence for high‐temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park. Environmental Microbiology, 14(5): 1272–1283. https://doi.org/10.1111/j.1462-2920.2012.02710.x |
Ma, L., Wu, G., Yang, J., et al., 2021a. Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Frontiers in Microbiology, 12, 569020. https://doi.org/10.3389/fmicb.2021.569020 |
Ma, L., She, W., Wu, G., et al., 2021b. Influence of Temperature and Sulfate Concentration on the Sulfate/Sulfite Reduction Prokaryotic Communities in the Tibetan Hot Springs. Microorganisms, 9(3) : 583. https://doi.org/10.3390/microorganisms9030583 |
Martinez, J. N., Nishihara, A., Lichtenberg, M., et al., 2019. Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan). Microbes and Environments, 34(4): 374–387. https://doi.org/10.1264/jsme2.ME19047 |
Miller, S. R., Purugganan, M. D., Curtis, S. E., 2006. Molecular Population Genetics and Phenotypic Diversification of Two Populations of the Thermophilic Cyanobacterium Mastigocladus laminosus. Applied and Environmental Microbiology, 72(4): 2793–2800. https://doi.org/10.1128/AEM.72.4.2793-2800.2006 |
Newell, S. E., McCarthy, M. J., Gardner, W. S., et al., 2016. Sediment Nitrogen Fixation: a Call for Re-evaluating Coastal N Budgets. Estuaries and Coasts, 39(6): 1626–1638. https://doi.org/10.1007/s12237-016-0116-y |
Newton, W. E., 2007. Physiology, Biochemistry, and Molecular Biology of Nitrogen Fixation. In Biology of the Nitrogen Cycle. Elsevier, 109–129. https://doi.org/10.1016/B978-044452857-5.50009-6 |
Nishihara, A., Thiel, V., Matsuura, K., et al., 2018. Phylogenetic Diversity of Nitrogenase Reductase Genes and Possible Nitrogen-Fixing Bacteria in Thermophilic Chemosynthetic Microbial Communities in Nakabusa Hot Springs. Microbes and Environments, 33(4): 357–365. https://doi.org/10.1264/jsme2.ME18030 |
Raymond, J., Siefert, J. L., Staples, C. R., Blankenship, R. E., 2004. The Natural History of Nitrogen Fixation. Molecular Biology and Evolution, 21(3) : 541–554. https://doi.org/10.1093/molbev/msh047 |
Rui, J., Hu, J., Wang, F., et al., 2022. Altitudinal niches of symbiotic, associative and free-living diazotrophs driven by soil moisture and temperature in the alpine meadow on the Tibetan Plateau. Environmental Research, 211, 113033. https://doi.org/10.1016/j.envres.2022.113033 |
Sayavedra, L., Li, T., Bueno Batista, M., et al., 2021. Desulfovibrio diazotrophicus sp. nov., a sulfate‐reducing bacterium from the human gut capable of nitrogen fixation. Environmental Microbiology, 23(6): 3164–3181. https://doi.org/10.1111/1462-2920.15538 |
Sekiguchi, Y., Muramatsu, M., Imachi, H., et al., 2008. Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 58(11), 2541–2548. https://doi.org/10.1099/ijs.0.2008/000893-0 |
Shannon, P., Markiel, A., Ozier, O., et al., 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11): 2498–2504. https://doi.org/10.1101/gr.1239303 |
Silverman, S. N., Kopf, S. H., Bebout, B. M., et al., 2019. Morphological and isotopic changes of heterocystous cyanobacteria in response to N 2 partial pressure. Geobiology, 17(1): 60–75. https://doi.org/10.1111/gbi.12312 |
Smith, A., Kostka, J., Devereux, R., et al., 2004. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments. Aquatic Microbial Ecology, 37, 183–195. https://doi.org/10.3354/ame037183 |
Song, Z.-Q, Wang, F., Zhi, X., et al., 2013. Bacterial and archaeal diversities in Y unnan and T ibetan hot springs, C hina. Environmental Microbiology, 15(4), 1160–1175. https://doi.org/10.1111/1462-2920.12025 |
Song, Z.-Q., Wang, L., Liang, F., et al., 2022. nifH gene expression and diversity in geothermal springs of Tengchong, China. Frontiers in Microbiology, 13, 980924. https://doi.org/10.3389/fmicb.2022.980924 |
Sonne-Hansen, J., Ahring, B. K., 1999. Thermodesulfobacterium hveragerdense sp.nov., and Thermodesulfovibrio islandicus sp.nov., Two Thermophilic Sulfate Reducing Bacteria Isolated from a Icelandic Hot Spring. Systematic and Applied Microbiology, 22(4): 559–564. https://doi.org/10.1016/S0723-2020(99)80009-5 |
Steunou, A.-S., Bhaya, D., Bateson, M. M., et al., 2006. In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proceedings of the National Academy of Sciences, 103(7): 2398–2403. https://doi.org/10.1073/pnas.0507513103 |
Steunou, A.-S., Jensen, S. I., Brecht, E., et al., 2008. Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. The ISME Journal, 2(4): 364–378. https://doi.org/10.1038/ismej.2007.117 |
Tamburello, G., Chiodini, G., Ciotoli, G., et al., 2022. Global thermal spring distribution and relationship to endogenous and exogenous factors. Nature Communications, 13(1): 6378. https://doi.org/10.1038/s41467-022-34115-w |
Tan H, Zhang Y, Zhang W, et al., 2012. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes. Applied Geochemistry, 51(12): 23–32. https://doi.org/10.1016/j.apgeochem.2014.09.006 |
Umezawa, K., Kojima, H., Kato, Y., et al., 2021. Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. Systematic and Applied Microbiology, 44(2): 126184. https://doi.org/10.1016/j.syapm.2021.126184 |
Wang, S., Hou, W., Dong, H., et al., 2013. Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS ONE, 8(5): e62901. https://doi.org/10.1371/journal.pone.0062901 |
Wang, X., Yin, Y., Yu, Z., et al., 2023. Distinct distribution patterns of the abundant and rare bacteria in high plateau hot spring sediments. Science of The Total Environment, 863, 160832. https://doi.org/10.1016/j.scitotenv.2022.160832 |
Zehr, J. P., Jenkins, B. D., Short, S. M., et al., 2003. Nitrogenase gene diversity and microbial community structure: a cross‐system comparison. Environmental Microbiology, 5(7): 539–554. https://doi.org/10.1046/j.1462-2920.2003.00451.x |
Zhang, Y., Wu, G., Jiang, H., et al., 2018. Abundant and Rare Microbial Biospheres Respond Differently to Environmental and Spatial Factors in Tibetan Hot Springs. Frontiers in Microbiology, 9, 2096. https://doi.org/10.3389/fmicb.2018.02096 |
Zhang, Y., Yang, Q., Ling, J., et al., 2017. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing. Frontiers in Microbiology, 8, 2032. https://doi.org/10.3389/fmicb.2017.02032 |