Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Turn off MathJax
Article Contents
Zhao-Qi Song, Li Wang, Yaru Ma, Dandan Deng, Yang Song, Feng Liang, Xiangyu Guan, Wen-Jun Li, Hongchen Jiang. Hydrochemistry predominantly shapes the unique nitrogen-fixing bacterial communities in Tibetan hot springs. Journal of Earth Science. doi: 10.1007/s12583-024-0147-4
Citation: Zhao-Qi Song, Li Wang, Yaru Ma, Dandan Deng, Yang Song, Feng Liang, Xiangyu Guan, Wen-Jun Li, Hongchen Jiang. Hydrochemistry predominantly shapes the unique nitrogen-fixing bacterial communities in Tibetan hot springs. Journal of Earth Science. doi: 10.1007/s12583-024-0147-4

Hydrochemistry predominantly shapes the unique nitrogen-fixing bacterial communities in Tibetan hot springs

doi: 10.1007/s12583-024-0147-4
Funds:

This research was supported by grants from the National Natural Science Foundation of China (Grant No. 31300430, 42172339, 91951205), Key scientific research project plan of colleges and universities in Henan Province (Grant No. 18A180002). Science and Technology Research Project of Henan Province (Grant No. 152102310352).

  • Received Date: 14 Mar 2024
    Available Online: 06 Jan 2025
  • The Tibetan Plateau has a large number of hot springs with varying temperatures and hydrochemistry, high elevation, and limited nitrogenous nutrition. Nitrogen-fixing bacteria (NFB) can fix N2 to form ammonia and thus provide bioavailable nitrogen. However, there is limited knowledge about the distribution of NFB and its influencing factors in Tibetan hot springs. Here, we measured hydrochemical variables of the hot springs with a wide temperature range (32–77 ºC) in the Qucai and Daggyai geothermal zones on the Tibetan Plateau and investigated the composition of NFB using high-throughput sequencing of 16S rRNA and nifH genes. The Cl/SO42− ratio in Qucai hot springs was higher than that in Daggyai, indicating that Qucai and Daggyai hot springs were more affected by the supply of liquid and gaseous phases, respectively. The NFB communities consisted predominantly of Nirtospirae, Chloroflexi, Deltaproteobacteria and an unidentified clade, with the last three acting as the main NFB with over 42% of the communities (the proportions are significantly larger than those found in hot springs of other geothermal regions). This demonstrates the uniqueness of NFB communities in Tibetan hot springs. NFB richness was limited by temperature in the studied Tibetan hot springs and was significantly lower than in low-elevation geothermal regions. The NFB community was predominantly affected by hydrochemistry, in contrast to the entire prokaryotic community, which was primarily influenced by temperature. This study expands our current understanding of NFB distribution and diversity as well as biogeochemical process in geothermal spring environments.

     

  • loading
  • Alcamán-Arias, M. E., Pedrós-Alió, C., Tamames, J., et al., 2018. Diurnal Changes in Active Carbon and Nitrogen Pathways Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat. Frontiers in Microbiology, 9, 2353. https://doi.org/10.3389/fmicb.2018.02353
    604-2
    Bertics, V., Sohm, J., Treude, T., et al., 2010. Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Marine Ecology Progress Series, 409, 1–15. https://doi.org/10.3354/meps08639
    Bolyen, E., Rideout, J. R., Dillon, M. R., et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852–857. https://doi.org/10.1038/s41587-019-0209-9
    Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336. https://doi.org/10.1038/nmeth.f.303
    Castenholz, R. W., Pierson, B. K., 2004. Ecology of Thermophilic Anoxygenic Phototrophs. In Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T. and Bauer, C. E., eds). Kluwer Academic Publishers, Dordrecht, 87–103. https://doi.org/10.1007/0-306-47954-0_5
    De’ath, G. 2007., BOOSTED TREES FOR ECOLOGICAL MODELING AND PREDICTION. Ecology, 88(1): 243–251. https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
    Edgar, R. C., Haas, B. J., Clemente, J. C., et al., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16) : 2194–2200. https://doi.org/10.1093/bioinformatics/btr381
    Eichner, M., Kranz, S. A., Rost, B., 2014. Combined effects of different CO 2 levels and N sources on the diazotrophic cyanobacterium Trichodesmium. Physiologia Plantarum, 152(2): 316–330. https://doi.org/10.1111/ppl.12172
    Estrella Alcamán, M., Fernandez, C., Delgado, A., et al., 2015. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. The ISME Journal, 9(10): 2290–2303. https://doi.org/10.1038/ismej.2015.63
    Feng, C., Yang J., Jiang H., 2018. Diversity and distribution of nitrogen-fixing Bacteria in two geothermal channels in Tengchong geothermal zone, Yunnan Province. Earth Science, 43(Suppl. 1):10-18. (in Chinese with English Abstract) https://doi.org/10.3799/dqkx.2018.911
    Feng, K., Peng, X., Zhang, Z., et al., 2022. iNAP: An integrated network analysis pipeline for microbiome studies. iMeta, 1(2) : e13. https://doi.org/10.1002/imt2.13
    Gaby, J. C., Buckley, D. H. 2012. A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase. PLoS ONE, 7(7): e42149. https://doi.org/10.1371/journal.pone.0042149
    Gier, J., Sommer, S., Löscher, C. R., et al., 2016. Nitrogen fixation in sediments along a depth transect through the Peruvianoxygen minimum zone. Biogeosciences, 13(14): 4065–4080. https://doi.org/10.5194/bg-13-4065-2016
    Gruber, N., Galloway, J. N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176) : 293–296. https://doi.org/10.1038/nature06592
    Guo, Q., Kirk Nordstrom, D., Blaine McCleskey, R., 2014. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems. Journal of Volcanology and Geothermal Research, 288, 94–104. https://doi.org/10.1016/j.jvolgeores.2014.10.005
    Guo, Q. and Wang, Y., 2012. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215–216, 61–73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
    Hall, J. R., Mitchell, K. R., Jackson-Weaver, O., et al., 2008. Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes. Applied and Environmental Microbiology, 74(15): 4910–4922. https://doi.org/10.1128/AEM.00233-08
    824-9
    Hamilton, T. L., Koonce, E., Howells, A., et al., 2014. Competition for Ammonia Influences the Structure of Chemotrophic Communities in Geothermal Springs. Applied and Environmental Microbiology, 80(2): 653–661. https://doi.org/10.1128/AEM.02577-13
    Huang, Q., Dong, C. Z., Dong, R. M., et al., 2011. Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles, 15(5): 549–563. https://doi.org/10.1007/s00792-011-0386-z
    Jabir, T., Vipindas, P. V., Jesmi, Y., et al., 2021. Influence of environmental factors on benthic nitrogen fixation and role of sulfur reducing diazotrophs in a eutrophic tropical estuary. Marine Pollution Bulletin, 165, 112126. https://doi.org/10.1016/j.marpolbul.2021.112126
    Jiang, Z., Li, P., Tu, J., et al., 2018. Arsenic in geothermal systems of Tengchong, China: Potential contamination on freshwater resources. International Biodeterioration & Biodegradation, 128, 28–35. https://doi.org/10.1016/j.ibiod.2016.05.013
    Klatt, C. G., Liu, Z., Ludwig, M., et al., 2013. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. The ISME Journal, 7(9): 1775–1789. https://doi.org/10.1038/ismej.2013.52
    177(89)90225-1
    Lehnen, N., Marchant, H. K., Schwedt, A., et al., 2016. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Systematic and Applied Microbiology, 39(7): 476–483. https://doi.org/10.1016/j.syapm.2016.08.004
    Li, R., Wu, G., Jones, B. Shi, T., 2020. Microbial fabrics of geyserites around hot spring pools in Daggyai, Tibet, China. Terra Nova, 32(5), 355–368. https://doi.org/10.1111/ter.12465
    Lin, K.-H., Liao, B.-Y., Chang, H.-W., et al., 2015. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics. BMC Genomics, 16(1): 1029. https://doi.org/10.1186/s12864-015-2230-9
    Liu, M., Guo, Q., Wu, G., et al., 2019. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China): Daggyai and Quzhuomu. Geothermics, 82, 190–202. https://doi.org/10.1016/j.geothermics.2019.06.009
    Loiacono, S. T., Meyer‐Dombard, D. R., Havig, J. R., et al., 2012. Evidence for high‐temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park. Environmental Microbiology, 14(5): 1272–1283. https://doi.org/10.1111/j.1462-2920.2012.02710.x
    Ma, L., Wu, G., Yang, J., et al., 2021a. Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Frontiers in Microbiology, 12, 569020. https://doi.org/10.3389/fmicb.2021.569020
    Ma, L., She, W., Wu, G., et al., 2021b. Influence of Temperature and Sulfate Concentration on the Sulfate/Sulfite Reduction Prokaryotic Communities in the Tibetan Hot Springs. Microorganisms, 9(3) : 583. https://doi.org/10.3390/microorganisms9030583
    Martinez, J. N., Nishihara, A., Lichtenberg, M., et al., 2019. Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan). Microbes and Environments, 34(4): 374–387. https://doi.org/10.1264/jsme2.ME19047
    Miller, S. R., Purugganan, M. D., Curtis, S. E., 2006. Molecular Population Genetics and Phenotypic Diversification of Two Populations of the Thermophilic Cyanobacterium Mastigocladus laminosus. Applied and Environmental Microbiology, 72(4): 2793–2800. https://doi.org/10.1128/AEM.72.4.2793-2800.2006
    Newell, S. E., McCarthy, M. J., Gardner, W. S., et al., 2016. Sediment Nitrogen Fixation: a Call for Re-evaluating Coastal N Budgets. Estuaries and Coasts, 39(6): 1626–1638. https://doi.org/10.1007/s12237-016-0116-y
    Newton, W. E., 2007. Physiology, Biochemistry, and Molecular Biology of Nitrogen Fixation. In Biology of the Nitrogen Cycle. Elsevier, 109–129. https://doi.org/10.1016/B978-044452857-5.50009-6
    Nishihara, A., Thiel, V., Matsuura, K., et al., 2018. Phylogenetic Diversity of Nitrogenase Reductase Genes and Possible Nitrogen-Fixing Bacteria in Thermophilic Chemosynthetic Microbial Communities in Nakabusa Hot Springs. Microbes and Environments, 33(4): 357–365. https://doi.org/10.1264/jsme2.ME18030
    Raymond, J., Siefert, J. L., Staples, C. R., Blankenship, R. E., 2004. The Natural History of Nitrogen Fixation. Molecular Biology and Evolution, 21(3) : 541–554. https://doi.org/10.1093/molbev/msh047
    Rui, J., Hu, J., Wang, F., et al., 2022. Altitudinal niches of symbiotic, associative and free-living diazotrophs driven by soil moisture and temperature in the alpine meadow on the Tibetan Plateau. Environmental Research, 211, 113033. https://doi.org/10.1016/j.envres.2022.113033
    Sayavedra, L., Li, T., Bueno Batista, M., et al., 2021. Desulfovibrio diazotrophicus sp. nov., a sulfate‐reducing bacterium from the human gut capable of nitrogen fixation. Environmental Microbiology, 23(6): 3164–3181. https://doi.org/10.1111/1462-2920.15538
    Sekiguchi, Y., Muramatsu, M., Imachi, H., et al., 2008. Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 58(11), 2541–2548. https://doi.org/10.1099/ijs.0.2008/000893-0
    Shannon, P., Markiel, A., Ozier, O., et al., 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11): 2498–2504. https://doi.org/10.1101/gr.1239303
    Silverman, S. N., Kopf, S. H., Bebout, B. M., et al., 2019. Morphological and isotopic changes of heterocystous cyanobacteria in response to N 2 partial pressure. Geobiology, 17(1): 60–75. https://doi.org/10.1111/gbi.12312
    Smith, A., Kostka, J., Devereux, R., et al., 2004. Seasonal composition and activity of sulfate-reducing prokaryotic communities in seagrass bed sediments. Aquatic Microbial Ecology, 37, 183–195. https://doi.org/10.3354/ame037183
    Song, Z.-Q, Wang, F., Zhi, X., et al., 2013. Bacterial and archaeal diversities in Y unnan and T ibetan hot springs, C hina. Environmental Microbiology, 15(4), 1160–1175. https://doi.org/10.1111/1462-2920.12025
    Song, Z.-Q., Wang, L., Liang, F., et al., 2022. nifH gene expression and diversity in geothermal springs of Tengchong, China. Frontiers in Microbiology, 13, 980924. https://doi.org/10.3389/fmicb.2022.980924
    Sonne-Hansen, J., Ahring, B. K., 1999. Thermodesulfobacterium hveragerdense sp.nov., and Thermodesulfovibrio islandicus sp.nov., Two Thermophilic Sulfate Reducing Bacteria Isolated from a Icelandic Hot Spring. Systematic and Applied Microbiology, 22(4): 559–564. https://doi.org/10.1016/S0723-2020(99)80009-5
    Steunou, A.-S., Bhaya, D., Bateson, M. M., et al., 2006. In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proceedings of the National Academy of Sciences, 103(7): 2398–2403. https://doi.org/10.1073/pnas.0507513103
    Steunou, A.-S., Jensen, S. I., Brecht, E., et al., 2008. Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. The ISME Journal, 2(4): 364–378. https://doi.org/10.1038/ismej.2007.117
    Tamburello, G., Chiodini, G., Ciotoli, G., et al., 2022. Global thermal spring distribution and relationship to endogenous and exogenous factors. Nature Communications, 13(1): 6378. https://doi.org/10.1038/s41467-022-34115-w
    Tan H, Zhang Y, Zhang W, et al., 2012. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes. Applied Geochemistry, 51(12): 23–32. https://doi.org/10.1016/j.apgeochem.2014.09.006
    Umezawa, K., Kojima, H., Kato, Y., et al., 2021. Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. Systematic and Applied Microbiology, 44(2): 126184. https://doi.org/10.1016/j.syapm.2021.126184
    Wang, S., Hou, W., Dong, H., et al., 2013. Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS ONE, 8(5): e62901. https://doi.org/10.1371/journal.pone.0062901
    Wang, X., Yin, Y., Yu, Z., et al., 2023. Distinct distribution patterns of the abundant and rare bacteria in high plateau hot spring sediments. Science of The Total Environment, 863, 160832. https://doi.org/10.1016/j.scitotenv.2022.160832
    Zehr, J. P., Jenkins, B. D., Short, S. M., et al., 2003. Nitrogenase gene diversity and microbial community structure: a cross‐system comparison. Environmental Microbiology, 5(7): 539–554. https://doi.org/10.1046/j.1462-2920.2003.00451.x
    Zhang, Y., Wu, G., Jiang, H., et al., 2018. Abundant and Rare Microbial Biospheres Respond Differently to Environmental and Spatial Factors in Tibetan Hot Springs. Frontiers in Microbiology, 9, 2096. https://doi.org/10.3389/fmicb.2018.02096
    Zhang, Y., Yang, Q., Ling, J., et al., 2017. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing. Frontiers in Microbiology, 8, 2032. https://doi.org/10.3389/fmicb.2017.02032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(8) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return