Citation: | Long Pan, Guoqiang Li, Xiaoyan Wang, Ming Jin, Xinrong He, Luo Qin, Zhong Wang, Wenwei Zhao, Chunzhu Chen, Yuanlu Liu, Jin Yang, Lele Shu. Quantitative Reconstruction of Salinity and Precipitation Changes in Central Asia over the Past 3 200 Years Using Diatom and Pollen Records of Lacustrine Sediment in Aibi Lake of SW Junggar Basin. Journal of Earth Science, 2025, 36(4): 1742-1755. doi: 10.1007/s12583-024-0149-2 |
The response of lake environments in arid Central Asia to climate change during the Late Holocene over the centennial to millennial timescales remains contentious. The reason that primarily paleoenvironmental proxies diverse and the scarcity of accurate quantitative reconstruction records. In this study, we employed diatoms and pollen records from lacustrine sediment in the Aibi Lake of Southwest Junggar Basin to quantitatively reconstruct salinity and watershed precipitation amounts while exploring the associated forcing mechanisms. The results indicate that Aibi Lake salinity varied between 2 and 47 g/L during the Late Holocene Period, indicating a generally brackish environment, and corresponding to prevailing
Aizen, E. M., Aizen, V. B., Melack, J. M., et al., 2001. Precipitation and Atmospheric Circulation Patterns at Mid-Latitudes of Asia. International Journal of Climatology, 21(5): 535–556. https://doi.org/10.1002/joc.626 |
Aizen, V. B., Aizen, E. M., Joswiak, D. R., et al., 2006. Climatic and Atmospheric Circulation Pattern Variability from Ice-Core Isotope/Geochemistry Records (Altai, Tien Shan and Tibet). Annals of Glaciology, 43(1): 49–60. https://doi.org/10.3189/172756406781812078 |
An, C. B., Lu, Y. B., Zhao, J. J., et al., 2012. A High-Resolution Record of Holocene Environmental and Climatic Changes from Lake Balikun (Xinjiang, China): Implications for Central Asia. The Holocene, 22(1): 43–52. https://doi.org/10.1177/0959683611405244 |
Birks, H. J. B., 1995. Quantitative Palaeoenvironmental Reconstructions. Quaternary Research Association, Cambridge. 161–254 |
Cai, Y. J., Chiang, J. C. H., Breitenbach, S. F. M., et al., 2017. Holocene Moisture Changes in Western China, Central Asia, Inferred from Stalagmites. Quaternary Science Reviews, 158: 15–28. https://doi.org/10.1016/j.quascirev.2016.12.014 |
Cao, X., Tian, F., Xu, Q., et al., 2022. Modern Pollen Dataset for Asia. National Tibetan Plateau/Third Pole Environment Data Center. |
Chen, F. H., Chen, J. H., Holmes, J., et al., 2010. Moisture Changes over the last Millennium in Arid Central Asia: a Review, Synthesis and Comparison with Monsoon Region. Quaternary Science Reviews, 29(7/8): 1055–1068. https://doi.org/10.1016/j.quascirev.2010.01.005 |
Chen, F. H., Chen, J. H., Huang, W., et al., 2019. Westerlies Asia and Monsoonal Asia: Spatiotemporal Differences in Climate Change and Possible Mechanisms on Decadal to Sub-Orbital Timescales. Earth-Science Reviews, 192: 337–354. https://doi.org/10.1016/j.earscirev.2019.03.005 |
Chen, F. H., Huang, W., Jin, L. Y., et al., 2011. Spatiotemporal Precipitation Variations in the Arid Central Asia in the Context of Global Warming. Science China Earth Sciences, 54(12): 1812–1821. https://doi.org/10.1007/s11430-011-4333-8 |
Chen, F. H., Huang, X. Z., Yang, M. L., et al., 2006. Westerly Dominated Holocene Climate Model in Arid Central Asia—Case Study on Bosten Lake, Xinjiang, China. Quaternary Sciences, 26(6): 881–887 (in Chinese with English Abstract) |
Chen, F. H., Yu, Z. C., Yang, M. L., et al., 2008. Holocene Moisture Evolution in Arid Central Asia and Its Out-of-Phase Relationship with Asian Monsoon History. Quaternary Science Reviews, 27(3/4): 351–364. https://doi.org/10.1016/j.quascirev.2007.10.017 |
Chen, J. H., Chen, F. H., Zhang, E. L., et al., 2008. A Preliminary Study on Chironomid-Based Salinity Reconstruction for Sugan Lake in the Last Millennium. Quaternary Sciences, 28(2): 338–344. https://doi.org/10.3321/j.issn:1001-7410.2008.02.017 (in Chinese with English Abstract) |
Chen, J. H., Liu, J. B., Zhang, X. J., et al., 2019. Unstable Little Ice Age Climate Revealed by High-Resolution Proxy Records from Northwestern China. Climate Dynamics, 53(3): 1517–1526. https://doi.org/10.1007/s00382-019-04685-5 |
Chen, L. X., Zhang, Y., Kong, Z. C., 2021. Airborne Pollen Patterns and Their Relationship with Meteorological Factors in the Betula Microphylla-Dominated Wetland of Ebinur Lake, Xinjiang, China. Science China Earth Sciences, 64(10): 1746–1760. https://doi.org/10.1007/s11430-020-9801-7 |
Chen, R. J., 2019. Mid- to Late Holocene Climate Change and Environmental Ecological Effects of Biomarker Records from Jili Lake, North Xinjiang: [Dissertation]. Lanzhou University, Lanzhou (in Chinese with English Abstract) |
Chen, S. Q., Sun, Y. H., Ding, G. Q., et al., 2025. Holocene Dynamics of Vegetation Cover and Their Driving Mechanisms in Asian Drylands. Journal of Earth Science, 36(2): 839–842. https://doi.org/10.1007/s12583-025-0173-x |
Chen, Y. R., Liu, X. Q. 2022. Vegetation and Climate Changes Since the Middle MIS 3 Inferred from a Lake Ailike Pollen Record, Xinjiang, Arid Central Asia. Quaternary Science Reviews, 290: 107636. https://doi.org/10.1016/j.quascirev.2022.107636 |
Cui, A. N., Lu, H. Y., Liu, X. Q., et al., 2021. Tibetan Plateau Precipitation Modulated by the Periodically Coupled Westerlies and Asian Monsoon. Geophysical Research Letters, 48(7): e2020GL091543. https://doi.org/10.1029/2020GL091543 |
Draxler, R. R., Hess, G. D., 1997. Description of the HYSPLIT_4 Modeling System. NOAA Tech. NOAA Technical Memorandum ERL ARL-224. Air Resources Laboratory, Silver Spring, Maryland. 24. |
Feng, S. N., Liu, X. Q., Shi, F., et al., 2022. Humidity Changes and Possible Forcing Mechanisms over the Last Millennium in Arid Central Asia. Climate of the Past, 18(5): 975–988. https://doi.org/10.5194/cp-18-975-2022 |
Feng, S., Nadarajah, S., Hu, Q., 2007. Modeling Annual Extreme Precipitation in China Using the Generalized Extreme Value Distribution. Journal of the Meteorological Society of Japan Ser Ⅱ, 85(5): 599–613. https://doi.org/10.2151/jmsj.85.599 |
Feng, Z. D., Wu, H. N., Zhang, C. J., et al., 2013. Bioclimatic Change of the Past 2500 Years within the Balkhash Basin, Eastern Kazakhstan, Central Asia. Quaternary International, 311: 63–70. https://doi.org/10.1016/j.quaint.2013.06.032 |
Fontana, L., Sun, M. J., Huang, X. Z., et al., 2019. The Impact of Climate Change and Human Activity on the Ecological Status of Bosten Lake, NW China, Revealed by a Diatom Record for the Last 2000 Years. The Holocene, 29(12): 1871–1884. https://doi.org/10.1177/0959683619865586 |
Fritz, S. C., 1990. Twentieth-Century Salinity and Water-Level Fluctuations in Devils Lake, North Dakota: Test of a Diatom-Based Transfer Function. Limnology and Oceanography, 35(8): 1771–1781. https://doi.org/10.4319/lo.1990.35.8.1771 |
He, Y. X., Zhao, C., Wang, Z., et al., 2013. Late Holocene Coupled Moisture and Temperature Changes on the Northern Tibetan Plateau. Quaternary Science Reviews, 80: 47–57. https://doi.org/10.1016/j.quascirev.2013.08.017 |
Huang, W., Chen, F. H., Feng, S., et al., 2013. Interannual Precipitation Variations in the Mid-Latitude Asia and Their Association with Large-Scale Atmospheric Circulation. Chinese Science Bulletin, 58(32): 3962–3968. https://doi.org/10.1007/s11434-013-5970-4 |
Huang, X. Z., Chen, C. Z., Jia, W. N., et al., 2015. Vegetation and Climate History Reconstructed from an Alpine Lake in Central Tienshan Mountains since 8.5 ka BP. Palaeogeography, Palaeoclimatology, Palaeoecology, 432: 36–48. |
Hurrell, J. W., 1995. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269(5224): 676–679. https://doi.org/10.1126/science.269.5224.676 |
Jia, H. J., Wu, J. L., Zhang, H., et al., 2020. Pollen-Based Climate Reconstruction from Ebi Lake in Northwestern China, Central Asia, over the Past 37 000 Years. Quaternary International, 544: 96–103. https://doi.org/10.1016/j.quaint.2020.02.033 |
Jiang, Q. F., Ji, J. F., Shen, J., et al., 2013. Holocene Vegetational and Climatic Variation in Westerly-Dominated Areas of Central Asia Inferred from the Sayram Lake in Northern Xinjiang, China. Science China Earth Sciences, 56: 339–353. https://doi.org/10.1007/s11430-012-4550-9 |
Jiang, Q. F., Shen, J., Liu, X. Q., et al., 2007. Holocene Climate Reconstruction of Wulungu Lake (Xinjiang, China) Inferred from Ostracod Species Assemblages and Stable Isotopes. Frontiers of Earth Science in China, 27(3): 382–391. https://doi.org/10.1007/s11707-008-0007-z |
Jing, Y. Q., Zhang, F., He, Y. F., et al., 2020. Assessment of Spatial and Temporal Variation of Ecological Environment Quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecological Indicators, 110: 105874. https://doi.org/10.1016/j.ecolind.2019.105874 |
Lan, B., Zhang, D. L., Yang, Y. P., 2018. Evolution of Lake Ailike (Northern Xinjiang of China) during Past 130 Years Inferred from Diatom Data. Quaternary International, 475: 70–79. https://doi.org/10.1016/j.quaint.2016.11.014 |
Lan, J. H., Xu, H., Sheng, E. G., et al., 2018. Climate Changes Reconstructed from a Glacial Lake in High Central Asia over the Past Two Millennia. Quaternary International, 487: 43–53. https://doi.org/10.1016/j.quaint.2017.10.035 |
Lan, J. H., Xu, H., Yu, K. K., et al., 2019. Late Holocene Hydroclimatic Variations and Possible Forcing Mechanisms over the Eastern Central Asia. Science China Earth Sciences, 62(8): 1288–1301. https://doi.org/10.1007/s11430-018-9240-x |
Lan, J. H., Zhang, J., Cheng, P., et al., 2020. Late Holocene Hydroclimatic Variation in Central Asia and Its Response to Mid-Latitude Westerlies and Solar Irradiance. Quaternary Science Reviews, 238: 106330. https://doi.org/10.1016/j.quascirev.2020.106330 |
Lei, Y. B., Tian, L. D., Bird, B. W., et al., 2014. A 2540-Year Record of Moisture Variations Derived from Lacustrine Sediment (Sasikul Lake) on the Pamir Plateau. The Holocene, 24(7): 761–770. https://doi.org/10.1177/0959683614530443 |
Li, G. Q., Wang, X. Y., Yang, H., et al., 2024. Asynchronous Holocene Lake Evolution in Arid Mid-Latitude Asia is Driven by Glacial Meltwater and Variations in Westerlies and the East Asian Summer Monsoon. Geological Society of America Bulletin, 136(11/12): 4579–4594. https://doi.org/10.1130/b37288.1 |
Lin, R. F., Wei, K. Q., Cheng, Z. Y., et al., 1996. A Palaeoclimatic Study on Lacustrine Cores from Manas Lake, Xinjiang, Western China. Geochimica, 25(1): 63–72 (in Chinese with English Abstract) |
Liu, W., Ma, L., Wu, J. L., et al., 2017. Environmental Variability and Human Activity over the Past 140 Years Documented by Sediments of Ebinur Lake in Arid Central Asia. Journal of Limnology, 76: 534–545. https://doi.org/10.4081/jlimnol.2017.1587 |
Liu, X. K., Rao, Z. G., Shen, C. C., et al., 2019. Holocene Solar Activity Imprint on Centennial- to Multidecadal-Scale Hydroclimatic Oscillations in Arid Central Asia. Journal of Geophysical Research: Atmospheres, 124(5): 2562–2573. https://doi.org/10.1029/2018JD029699 |
Ma, J. Z., Edmunds, W. M., 2006. Groundwater and Lake Evolution in the Badain Jaran Desert Ecosystem, Inner Mongolia. Hydrogeology Journal, 14(7): 1231–1243. https://doi.org/10.1007/s10040-006-0045-0 |
Ma, L., Wu, J. L., Yu, H., et al., 2011. The Medieval Warm Period and the Little Ice Age from a Sediment Record of Aibi Lake, Northwest China. Boreas, 40: 518–524. https://doi.org/10.1111/j.1502-3885.2010.00200.x |
Mao, X., Liu, X. Q., Feng, S. N., et al., 2023. Solar Activity Dominated the Multidecadal- to Centennial-Scale Humidity Oscillations during the Little Ice Age in Arid Central Asia. Catena, 223: 106935. https://doi.org/10.1016/j.catena.2023.106935 |
Mischke, S., Wünnemann, B., 2006. The Holocene Salinity History of Bosten Lake (Xinjiang, China) Inferred from Ostracod Species Assemblages and Shell Chemistry: Possible Palaeoclimatic Implications. Quaternary International, 154: 100–112. https://doi.org/10.1016/j.quaint.2006.02.014 |
Olsen, J., Anderson, N. J., Knudsen, M. F., 2012. Variability of the North Atlantic Oscillation over the Past 5 200 Years. Nature Geoscience, 5(11): 808–812. https://doi.org/10.1038/ngeo1589 |
Pan, L., Li, G. Q., Chen, C. Z., et al., 2024. Late Holocene Decoupling of Lake and Vegetation Ecosystem in Response to Centennial-Millennial Climatic Changes in Arid Central Asia: A Case Study from Aibi Lake of Western Junggar Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 646: 112233. https://doi.org/10.1016/j.palaeo.2024.112233 |
Reimer, P. J., Austin, W. E. N., Bard, E., et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 Cal kBP). Radiocarbon, 62(4): 725–757. https://doi.org/10.1017/rdc.2020.41 |
Smol, J. P., Cumming, B. F., 2000. Tracking Long-Term Changes in Climate Using Algal Indicators in Lake Sediments. Journal of Phycology, 36(6): 986–1011. https://doi.org/10.1046/j.1529-8817.2000.00049.x |
Song, B., Wang, R., Wang, Q., et al., 2021. Pollen and Diatom Record Long-Term Complex Relationships between Diversity and Stability in a Lake and Nearby Vegetation from Tingming Lake in Yunnan, SW China. Quaternary International, 580: 87–94. https://doi.org/10.1016/j.quaint.2020.10.013 |
Steinhilber, F., Abreu, J. A., Beer, J., et al., 2012. 9 400 Years of Cosmic Radiation and Solar Activity from Ice Cores and Tree Rings. Proceedings of the National Academy of Sciences of the United States of America, 109(16): 5967–5971. https://doi.org/10.1073/pnas.1118965109 |
Steinhilber, F., Beer, J., Fröhlich, C. 2009. Total Solar Irradiance during the Holocene. Geophysical Research Letters. 36. https://doi.org/10.1029/2009gl040142. |
Stuiver, M., Reimer, P. J., Bard, E., et al., 1998. INTCAL98 Radiocarbon Age Calibration, 24, 000-0 cal BP. Radiocarbon, 40(3): 1041–1083. https://doi.org/10.1017/S0033822200019123 |
Tan, L. C., Cheng, H., Li, D., et al., 2024. Hydroclimatic Changes on Multiple Timescales since 7800 y BP in the Winter Precipitation-Dominated Central Asia. Proceedings of the National Academy of Sciences of the United States of America, 121(14): e2321645121. https://doi.org/10.1073/pnas.2321645121 |
Ter Braak, C. J. F., Juggins, S., 1993. Weighted Averaging Partial Least Squares Regression (WA-PLS): An Improved Method for Reconstructing Environmental Variables from Species Assemblages. Hydrobiologia, 269(1): 485–502. https://doi.org/10.1007/BF00028046 |
Thompson, D. W., Wallace, J. M., 2001. Regional Climate Impacts of the Northern Hemisphere Annular Mode. Science, 293(5527): 85–89. https://doi.org/10.1126/science.1058958 |
Torrence, C., Compo, G. P., 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1): 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 |
Wang, H. Y., Dong, H. L., Zhang, C. L., et al., 2014. Water Depth Affecting Thaumarchaeol Production in Lake Qinghai, Northeastern Qinghai-Tibetan Plateau: Implications for Paleo Lake Levels and Paleoclimate. Chemical Geology, 368: 76–84. https://doi.org/10.1016/j.chemgeo.2014.01.009 |
Wanner, H., Brönnimann, S., Casty, C., et al., 2001. North Atlantic Oscillation: Concepts and Studies. Surveys in Geophysics, 22(4): 321–381. https://doi.org/10.1023/A:1014217317898 |
Wu, C. Y., 2010. Study on Bottom Topography of Ebinur Based on Remote Sensing Technology: [Dissertation]. Xinjiang Normal University, Urumqi (In Chinese with English Abstract) |
Wu, D., Zhou, A. F., Zhang, J. W., et al., 2020. Temperature-Induced Dry Climate in Basins in the Northeastern Tibetan Plateau during the Early to Middle Holocene. Quaternary Science Reviews, 237: 106311. https://doi.org/10.1016/j.quascirev.2020.106311 |
Wu, J. L., Liu, J. J., Wang, S. M., 2004. Climatic Change Record from Stable Isotopes in Lake Aibi, Xinjiang during the Past 1500 Years. Quaternary Sciences, 24(5): 585–590 (in Chinese with English Abstract) |
Wu, J. L., Shen, J., Wang, S. M., et al., 2005. Characteristics of an Early Holocene Climate and Environment from Lake Sediments in Ebinur Region, NW China. Science in China Series D: Earth Sciences, 48(2): 258–265. https://doi.org/10.1360/02yd0298 |
Yan, D. N., Xu, H., Lan, J. H., et al., 2019. Solar Activity and the Westerlies Dominate Decadal Hydroclimatic Changes over Arid Central Asia. Global and Planetary Change, 173: 53–60. https://doi.org/10.1016/j.gloplacha.2018.12.006 |
Yang, X. D., Wang, S. M., Kamenik, C., et al., 2003. Diatom Assemblage and Lake Paleosalinity Quantitative Recovery from Chen Co Core in Southern Tibet. Science China Earth Sciences, 33(2): 163–169. https://doi.org/10.1360/02yd0142 (in Chinese with English Abstract) |
Zhang, M., Chen, Y. N., Shen, Y. J., et al., 2017. Changes of Precipitation Extremes in Arid Central Asia. Quaternary International, 436: 16–27. https://doi.org/10.1016/j.quaint.2016.12.024 |
Zhang, P. Z., Cheng, H., Edwards, R. L., et al., 2008. A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record. Science, 322(5903): 940–942. https://doi.org/10.1126/science.1163965 |
Zhang, Y., An, C. B., Zheng, L. Y., et al., 2023. Assessment of Lake Area in Response to Climate Change at Varying elevations: A Case Study of Mt. Tianshan, Central Asia. Science of The Total Environment, 869: 161665. https://doi.org/10.1016/j.scitotenv.2023.161665 |
Zhao, C., Yu, Z. C., Zhao, Y., et al., 2009. Possible Orographic and Solar Controls of Late Holocene Centennial-Scale Moisture Oscillations in the Northeastern Tibetan Plateau. Geophysical Research Letters, 36(21): L21705. https://doi.org/10.1029/2009GL040951 |
Zhao, C., Yu, Z. C., Zhao, Y., et al., 2010. Holocene Millennial-Scale Climate Variations Documented by Multiple Lake-Level Proxies in Sediment Cores from Hurleg Lake, Northwest China. Journal of Paleolimnology, 44(4): 995–1008. https://doi.org/10.1007/s10933-010-9469-6 |
Zhong, W., Xue, J. B., Shu, Q., et al., 2007. Climatic Change during the last 4000 Years in the Southern Tarim Basin, Xinjiang, Northwest China. Journal of Quaternary Science, 22(7): 659–665. https://doi.org/10.1002/jqs.1095 |
Zhou, J. C., Wu, J. L., Ma, L., et al., 2019. Late Quaternary Lake-Level and Climate Changes in Arid Central Asia Inferred from Sediments of Ebinur Lake, Xinjiang, Northwestern China. Quaternary Research, 92(2): 416–429. https://doi.org/10.1017/qua.2019.27 |