Appelö, D., Petersson, N. A., 2009. A Stable Finite Difference Method for the Elastic Wave Equation on Complex Geometries with Free Surfaces. Communications in Computational Physics, 5: 84–107 |
Bohlen, T., Kugler, S., Klein, G., et al., 2004. 1.5D Inversion of Lateral Variation of Scholte-Wave Dispersion. Geophysics, 69(2): 330–344. https://doi.org/10.1190/1.1707052 |
Buchen, P. W., Ben-Hador, R., 1996. Free-Mode Surface-Wave Computations. Geophysical Journal International, 124(3): 869–887. https://doi.org/10.1111/j.1365-246x.1996.tb05642.x |
Carcione, J. M., Helle, H. B., 2004. The Physics and Simulation of Wave Propagation at the Ocean Bottom. Geophysics, 69(3): 825–839. https://doi.org/10.1190/1.1759469 |
Choi, Y., Min, D. J., Shin, C., 2008. Two-Dimensional Waveform Inversion of Multi-Component Data in Acoustic-Elastic Coupled Media. Geophysical Prospecting, 56(6): 863–881. https://doi.org/10.1111/j.1365-2478.2008.00735.x |
Hvid, S. L., 1994. Three Dimensional Algebraic Grid Generation: [Dissertation]. Technical University of Denmark, Copenhagen |
Huang, P. D., Lu, J., Wang, Y., 2022. Second-Order Approximate Reflection Coefficients of Vertical Transversely Isotropic Thin Beds. Acta Geophysica, 70(3): 1155–1169. https://doi.org/10.1007/s11600-022-00758-y |
Komatitsch, D., Barnes, C., Tromp, J., 2000. Wave Propagation near a Fluid-Solid Interface: A Spectral-Element Approach. Geophysics, 65(2): 623–631. https://doi.org/10.1190/1.1444758 |
Klein, G., Bohlen, T., Theilen, F., et al., 2005. Acquisition and Inversion of Dispersive Seismic Waves in Shallow Marine Environments. Marine Geophysical Researches, 26(2): 287–315. https://doi.org/10.1007/s11001-005-3725-6 |
Kugler, S., Bohlen, T., Bussat, S., et al., 2005. Variability of Scholte-Wave Dispersion in Shallow-Water Marine Sediments. Journal of Environmental and Engineering Geophysics, 10(2): 203–218. https://doi.org/10.2113/jeeg10.2.203 |
Lan, H., Zhang, Z., 2011. Three-Dimensional Wave-Field Simulation in Heterogeneous Transversely Isotropic Medium with Irregular Free Surface. Bulletin of the Seismological Society of America, 101(3): 1354–1370. https://doi.org/10.1785/0120100194 |
Li, Q. Y., Wu, G. C., Wu, J. L., et al., 2019. Finite Difference Seismic Forward Modeling Method for Fluid-Solid Coupled Media with Irregular Seabed Interface. Journal of Geophysics and Engineering, 16(1): 198–214. https://doi.org/10.1093/jge/gxy017 |
Liu, X. B., 2023. Modeling Seismic Waves in Ocean with the Presence of Irregular Seabed and Rough Sea Surface. Journal of Geophysics and Engineering, 20(1): 49–66. https://doi.org/10.1093/jge/gxac093 |
Lu, J., Ma, Z. J., Xiong, S., et al., 2023. Imaging of 3-D Three-Component Vertical Seismic Profile Data Based on Horizontally Layered Azimuthally Anisotropic Media. IEEE Transactions on Geoscience and Remote Sensing, 61: 3317140. https://doi.org/10.1109/tgrs.2023.3317140 |
McMechan, G. A., Yedlin, M. J., 1981. Analysis of Dispersive Waves by Wave Field Transformation. Geophysics, 46(6): 869–874. https://doi.org/10.1190/1.1441225 |
Nilsson, S., Petersson, N. A., Sjögreen, B., et al., 2007. Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation. SIAM Journal on Numerical Analysis, 45(5): 1902–1936. https://doi.org/10.1137/060663520 |
Qu, Y. M., Sun, J. Z., Li, Z. C., et al., 2018. Forward Modeling of Ocean-Bottom Cable Data and Wave-Mode Separation in Fluid-Solid Elastic Media with Irregular Seabed. Applied Geophysics, 15(3): 432–447. https://doi.org/10.1007/s11770-018-0699-0 |
Randall, C., 1983. Numerical Simulation of Acoustic Propagation at a Fluid-Solid Interface. The Journal of the Acoustical Society of America, 74(S1): S87–S88. https://doi.org/10.1121/1.2021196 |
Rao, Y., Wang, Y. H., 2018. Seismic Waveform Simulation for Models with Fluctuating Interfaces. Scientific Reports, 8(1): 3098. https://doi.org/10.1038/s41598-018-20992-z |
Sofronov, I., Zaitsev, N., Dovgilovich, L., 2015. Multi-Block Finite-Difference Method for 3D Elastodynamic Simulations in Anisotropic Subhorizontally Layered Media. Geophysical Prospecting, 63(5): 1142–1160. https://doi.org/10.1111/1365-2478.12231 |
Sun, Y. C., Zhang, W., Xu, J. K., et al., 2017. Numerical Simulation of 2-D Seismic Wave Propagation in the Presence of a Topographic Fluid-Solid Interface at the Sea Bottom by the Curvilinear Grid Finite-Difference Method. Geophysical Journal International, 210(3): 1721–1738. https://doi.org/10.1093/gji/ggx257 |
Thompson, J. F., Warsi, Z. U. A., Mastin, C. W., 1985. Numerical Grid Generation Foundations and Applications: North Hollad Publishing Company, New York |
van Vossen, R., Robertsson, J. O. A., Chapman, C. H., 2002. Finite-Difference Modeling of Wave Propagation in a Fluid-Solid Configuration. Geophysics, 67(2): 618–624. https://doi.org/10.1190/1.1468623 |
Wang, Y., Zhou, H., Yuan, S. Y., et al., 2017. A Fourth Order Accuracy Summation-by-Parts Finite Difference Scheme for Acoustic Reverse Time Migration in Boundary-Conforming Grids. Journal of Applied Geophysics, 136: 498–512. https://doi.org/10.1016/j.jappgeo.2016.12.002 |
Wu, H., Shao, G. Z., Li, Q. C., 2018. Study of Scholte Wave Dispersion Curves and Modal Energy Distribution Using a Wavefield Numerical Simulation Method. Exploration Geophysics, 49(3): 372–385. https://doi.org/10.1071/eg16048 |
Yilmaz, O., 1987. Seismic Data Processing, Investigations in Geophysics. Society of Exploration Geophysicists, Houston |
Zhang, J. F., 2004. Wave Propagation across Fluid-Solid Interfaces: A Grid Method Approach. Geophysical Journal International, 159(1): 240–252. https://doi.org/10.1111/j.1365-246x.2004.02372.x |
Zhang, Z., Lu, J., Zhang, X. Y., et al., 2022. Approximation of P-, S1-, and S2-Wave Reflection Coefficients for Orthorhombic Media. Geophysics, 87(4): C63–C76. https://doi.org/10.1190/geo2021-0400.1 |
Zhang, H. M., Lu, J., Wang, Y., et al., 2023. PP- and PS-Wave Migration of OBN Seismic Data from Rugged Seabeds. Acta Geophysica, online first. https://doi.org/10.1007/s11600-023-01203-4 |