Citation: | Zhongwu Lan, Magdalena H. Huyskens, Rong Ren, Qing-Zhu Yin. A potentially New Early Ediacaran Glaciation. Journal of Earth Science, 2024, 35(6): 1810-1819. doi: 10.1007/s12583-024-1979-7 |
Multiple episodes of Neoproterozoic glaciation, namely the Beiyixi, Altungol, Tereeken and Hankalchough glaciations, are recorded in the Kuruktag area of northeastern Tarim Craton, NW China. The Tereeken glaciation was previously correlated with the global Marinoan glaciation based on sedimentary and chemostratigraphic features recorded in the cap dolostone immediately overlying the glaciogenic diamictite, as well as less precise radiometric age constraints. In this study, we obtained chemical-abrasion isotope dilution isotope ratio mass spectrometry (CA-ID-IRMS) U-Pb age of 624.03 ± 0.10 Ma from zircons extracted from a tuff lava interbeded within the diamictite of the Tereeken Formation, which suggests an Early Ediacaran age for the Tereeken glaciation. Such newly discovered Early Ediacaran glaciation in the Tarim region could have induced the negative δ13Ccarb excursions of 625–605 Ma by providing oxygen and other oxidants to invoke remineralization of a deep ocean dissolved organic carbon (DOC) reservoir.
Bingen, B., Griffin, W. L., Torsvik, T. H., et al., 2005. Timing of Late Neoproterozoic Glaciation on Baltica Constrained by Detrital Zircon Geochronology in the Hedmark Group, South-East Norway. Terra Nova, 17(3): 250–258. https://doi.org/10.1111/j.1365-3121.2005.00609.x |
Bjerrum, C. J., Canfield, D. E., 2011. Towards a Quantitative Understanding of the Late Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 108(14): 5542–5547. https://doi.org/10.1073/pnas.1101755108 |
Black, L. P., Kamo, S. L., Allen, C. M., et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 205(1/2): 115–140. https://doi.org/10.1016/j.chemgeo.2004. 01.003 doi: 10.1016/j.chemgeo.2004.01.003 |
Calver, C. R., Black, L. P., Everard, J. L., et al., 2004. U-Pb Zircon Age Constraints on Late Neoproterozoic Glaciation in Tasmania. Geology, 32(10): 893. https://doi.org/10.1130/g20713.1 |
Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98. https://doi.org/10.1126/science.1107765 |
Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091–1097. https://doi.org/10.1126/science.1206375 |
Gao, L. Z., Wang, Z. Q., Xu, Z. Q., et al., 2010. A New Evidence from Zircon SHRIMP U-Pb Dating of the Neoproterozoic Diamictite in Quruqtagh Area, Tarim Basin, Xinjiang, China. Geological Bulletin of China, 29: 205–213 (in Chinese with English Abstract) |
Gao, Z., Zhu, S., 1984. Precambrian Geology in Xinjiang, China. Xinjiang People's Publishing House, Urumuqi. 151 (in Chinese) |
Guo, Z. J., Zhang, Z. C., Liu, S. W., et al., 2003. U-Pb Geochronological Evidence for the Early Precambrian Complex of the Tarim Craton, NW China. Acta Petrologica Sinica, 19: 537–542 (in Chinese with English Abstract) |
He, J. W., Zhu, W. B., Ge, R. F., 2014. New Age Constraints on Neoproterozoic Diamicites in Kuruktag, NW China and Precambrian Crustal Evolution of the Tarim Craton. Precambrian Research, 241: 44–60. https://doi.org/10.1016/j.precamres.2013.11.005 |
Hiess, J., Condon, D. J., McLean, N., et al., 2012. 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 335(6076): 1610–1614. https://doi.org/10.1126/science.1215507 |
Hoffman, P. F., Li, Z. X., 2009. A Palaeogeographic Context for Neoproterozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3/4): 158–172. https://doi.org/10.1016/j.palaeo.2009.03.013 |
Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proceedings of the National Academy of Sciences of the United States of America, 113(52): 14904–14909. https://doi.org/10.1073/pnas.1607712113 |
Huang, Z. B., Wang, Z. H., Yang, Z. L., 2009. Comprehensive Study on Petroleum Geology in Kuruktag Area and Base Construction of Field Geology Investigation in Kuqa Area (First Volume). Research Institute of Petroleum Exploration & Development of Tarim Oilfield Company, Korla. 1–545 (in Chinese) |
Huyskens, M. H., Iizuka, T., Amelin, Y., 2012. Evaluation of Colloidal Silicagels for Lead Isotopic Measurements Using Thermal Ionisation Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 27(9): 1439–1446. https://doi.org/10.1039/c2ja30083d |
Huyskens, M. H., Zink, S., Amelin, Y., 2016. Evaluation of Temperature-Time Conditions for the Chemical Abrasion Treatment of Single Zircons for U-Pb Geochronology. Chemical Geology, 438: 25–35. https://doi.org/10.1016/j.chemgeo.2016.05.013 |
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., et al., 1971. Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4(5): 1889 |
Jiang, G. Q., Kennedy, M. J., Christie-Blick, N., 2003. Stable Isotopic Evidence for Methane Seeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 426: 822–826. https://doi.org/10.1038/nature02201 |
Kou, X. W., Wang, Y., Wei, W., et al., 2008. The Neoproterozoic Altungol and Huangyanggou Formations in Tarim Plate: Recognized newly Glaciation and Inter-Glaciation? Acta Petrologica Sinica, 24: 2863–2868 (in Chinese with English Abstract) |
Krogh, T. E., 1973. A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determinations. Geochimica et Cosmochimica Acta, 37(3): 485–494. https://doi.org/10.1016/0016-7037(73)90213-5 |
Kumpulainen, R. A., Hamilton, M. A., Söderlund, U., et al., 2021. U-Pb Baddeleyite Age for the Ottfjället Dyke Swarm, Central Scandinavian Caledonides: New Constraints on Ediacaran Opening of the Iapetus Ocean and Glaciations on Baltica. GFF, 143(1): 40–54. https://doi.org/10.1080/11035897.2021.1888314 |
Lamminen, J., Andersen, T., Nystuen, J. P., 2015. Provenance and Rift Basin Architecture of the Neoproterozoic Hedmark Basin, South Norway Inferred from U-Pb Ages and Lu-Hf Isotopes of Conglomerate Clasts and Detrital Zircons. Geological Magazine, 152(1): 80–105. https://doi.org/10.1017/s0016756814000144 |
Lan, Z. W., 2022. WANCE: A Possibly Volcanism-Induced Ediacaran Carbon Isotope Excursion. Journal of Earth Science, 33(3): 778–788. https://doi.org/10.1007/s12583-020-1106-3 |
Lan, Z. W., Sano, Y., Yahagi, T., et al., 2019. An Integrated Chemostratigra-phic (δ13C-δ18O-87Sr/86Sr-δ15N) Study of the Doushantuo Formation in Western Hubei Province, South China. Precambrian Research, 320: 232–252. https://doi.org/10.1016/j.precamres.2018.10.018 |
Lan, Z. W., Huyskens, M. H., Lu, K., et al., 2020. Toward Refining the Onset Age of Sturtian Glaciation in South China. Precambrian Research, 338: 105555. https://doi.org/10.1016/j.precamres.2019.105555 |
Lan, Z. W., Huyskens, M. H., Le Hir, G., et al., 2022a. Massive Volcanism may Have Foreshortened the Marinoan Snowball Earth. Geophysical Research Letters, 49(6): e2021GL097156. https://doi.org/10.1029/2021gl097156 |
Lan, Z. W., Wu, S. T., Roberts, N. M. W., et al., 2022b. Geochronological and Geochemical Constraints on the Origin of Highly 13Ccarb-Depleted Calcite in Basal Ediacaran Cap Carbonate. Geological Magazine, 159(8): 1323–1334. https://doi.org/10.1017/s001675682200019x |
Li, C., Cheng, M., Zhu, M. Y., et al., 2018. Heterogeneous and Dynamic Marine Shelf Oxygenation and Coupled Early Animal Evolution. Emerging Topics in Life Sciences, 2(2): 279–288. https://doi.org/10.1042/etls20170157 |
Li, Z. H., Li, B., Li, P., et al., 2023. Zircon U⁃Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of Diorite in Heishishan Copper Polymetallic Deposit, East Kunlun. Earth Science, 48(12): 4465–4480. https://doi.org/10.3799/dqkx.2022.067 (in Chinese with English Abstract) |
Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219–232. https://doi.org/10.1016/j.sedgeo.2013.05.016 |
Long, X. P., Yuan, C., Sun, M., et al., 2011. Reworking of the Tarim Craton by Underplating of Mantle Plume-Derived Magmas: Evidence from Neoproterozoic Granitoids in the Kuluketage Area, NW China. Precambrian Research, 187(1/2): 1–14. https://doi.org/10.1016/j.precamres.2011.02.001 |
Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94–107. https://doi.org/10.1016/j.precamres.2007.04.025 |
Ludwig, K., 2012. Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 5 |
Myrow, P. M., Kaufman, A. J., 1999. A newly Discovered Cap Carbonate above Varanger-Age Glacial Deposits in Newfoundland, Canada. Journal of Sedimentary Research, 69: 784–793. https://doi.org/10.2110/jsr.69.784 |
Myrow, P. M., Lamb, M. P., Ewing, R. C., 2018. Rapid Sea Level Rise in the Aftermath of a Neoproterozoic Snowball Earth. Science, 360(6389): 649–651. https://doi.org/10.1126/science.aap8612 |
Nordsvan, A. R., Barham, M., Cox, G., et al., 2019. Major Shoreline Retreat and Sediment Starvation Following Snowball Earth. Terra Nova, 31(6): 495–502. https://doi.org/10.1111/ter.12426 |
Norin, E., 1937. Reports from the Scientific Expedition to the Northwestern Provinces of China under the Leadership of Dr. Sven Hedin, III. Geology, 1. Geology of Western Quruqtagh, Eastern Tien-Shan. Bokförlags Aktiebolaget Thule, Stockholm. 194 |
Pierrehumbert, R. T., 2004. High Levels of Atmospheric Carbon Dioxide Necessary for the Termination of Global Glaciation. Nature, 429: 646. https://doi.org/10.1038/nature02640 |
Pu, J. P., Bowring, S. A., Ramezani, J., et al., 2016. Dodging Snowballs: Geochronology of the Gaskiers Glaciation and the First Appearance of the Ediacaran Biota. Geology, 44(11): 955–958. https://doi.org/10.1130/g38284.1 |
Ren, R., Guan, S. W., Zhang, S. C., et al., 2020. How did the Peripheral Subduction Drive the Rodinia Breakup: Constraints from the Neoproterozoic Tectonic Process in the Northern Tarim Craton. Precambrian Research, 339: 105612. https://doi.org/10.1016/j.precamres.2020.105612 |
Richter, S., Eykens, R., Kühn, H., et al., 2010. New Average Values for the n(238U)/n(235U) Isotope Ratios of Natural Uranium Standards. International Journal of Mass Spectrometry, 295(1/2): 94–97. https://doi.org/10.1016/j.ijms.2010.06.004 |
Rothman, D. H., Hayes, J. M., Summons, R. E., 2003. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8124–8129. https://doi.org/10.1073/pnas.0832439100 |
Schmitz, M. D., Schoene, B., 2007. Derivation of Isotope Ratios, Errors, and Error Correlations for U-Pb Geochronology Using 205Pb-235U-(233U)-Spiked Isotope Dilution Thermal Ionization Mass Spectrometric Data. Geochemistry, Geophysics, Geosystems, 8(8): Q08006. https://doi.org/10.1029/2006gc001492 |
Schrag, D. P., Higgins, J. A., MacDonald, F. A., et al., 2013. Authigenic Carbonate and the History of the Global Carbon Cycle. Science, 339(6119): 540–543. https://doi.org/10.1126/science.1229578 |
Verbruggen, A., Alonso, A., Eykens, R., et al., 2008. Preparation and Certification of IRMM-3636, IRMM-3636a and IRMM-3636b. OPOCE. 24 |
Villa, I. M., Bonardi, M. L., De Bièvre, P., et al., 2016. IUPAC-IUGS Status Report on the Half-Lives of 238U, 235U and 234U. Geochimica et Cosmo-chimica Acta, 172: 387–392. https://doi.org/10.1016/j.gca.2015.10.011 |
Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347–350. https://doi.org/10.1130/g24513a.1 |
Wang, R. M., Shen, B., Lang, X. G., et al., 2023a. A Great Late Ediacaran Ice Age. National Science Review, 10(8): nwad117. https://doi.org/10.1093/nsr/nwad117 |
Wang, R. M., Yin, Z. J., Shen, B., 2023b. A Late Ediacaran Ice Age: The Key Node in the Earth System Evolution. Earth-Science Reviews, 247: 104610. https://doi.org/10.1016/j.earscirev.2023.104610 |
Wang, W., Zhou, C. M., Guan, C. G., et al., 2014. An Integrated Carbon, Oxygen, and Strontium Isotopic Studies of the Lantian Formation in South China with Implications for the Shuram Anomaly. Chemical Geology, 373: 10–26. https://doi.org/10.1016/j.chemgeo.2014.02.023 |
Wang, Z., Wang, J. S., Suess, E., et al., 2017. Silicified Glendonites in the Ediacaran Doushantuo Formation (South China) and Their Potential Paleoclimatic Implications. Geology, 45(2): 115–118. https://doi.org/10.1130/g38613.1 |
Xiao, S. H., Bao, H. M., Wang, H. F., et al., 2004. The Neoproterozoic Quruqtagh Group in Eastern Chinese Tianshan: Evidence for a Post-Marinoan Glaciation. Precambrian Research, 130(1/2/3/4): 1–26. https://doi.org/10.1016/j.precamres.2003.10.013 |
Xiao, S. H., Narbonne, G. M., Zhou, C. M., et al., 2016. Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects. Episodes, 39(4): 540–555. https://doi.org/10.18814/epiiugs/2016/v39i4/103886 |
Xiao, S. H., Cui, H., Kang, J. Y., et al., 2020. Using SIMS to Decode Noisy Stratigraphic δ13C Variations in Ediacaran Carbonates. Precambrian Research, 343: 105686. https://doi.org/10.1016/j.precamres.2020. 105686 doi: 10.1016/j.precamres.2020.105686 |
Xin, H. T., Tian, J., Teng, X. J., et al., 2023. Petrology, Zircon Chronology and Geochemistry of the Late Silurian Ophiolitic Mélanges and the Baiyunshan Forearc Complex in the Central Beishan Orogenic Belt, NE China. Journal of Earth Science, 34(2): 444–455. https://doi.org/10.1007/s12583-020-1377-8 |
Xinjiang Bureau of Geology and Mineral Resources (XBGMR), 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing. 841 (in Chinese with English Summary) |
Xu, B., Zheng, H. F., Yao, H. T., et al., 2003. C-Isotope Composition and Significance of the Sinian on the Tarim Plate. Chinese Science Bulletin, 48(4): 385–389. https://doi.org/10.1007/bf03183235 |
Xu, B., Xiao, S., Zou, H., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247–258. https://doi.org/10.1016/j.precamres.2008.10.008 |
Yuan, S., Li, H., Zhang, L. P., et al., 2022. Geochemical and Zircon Hf-O Isotopic Constraints on the Origin of Wulian A-Type Granite in Shandong Peninsula, Eastern China. Journal of Earth Science, 33(3): 609–622. https://doi.org/10.1007/s12583-021-1592-y |
Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167–179. https://doi.org/10.1016/j.jseaes.2009.02.003 |
Zhang, C. L., Li, H. K., Santosh, M., et al., 2012. Precambrian Evolution and Cratonization of the Tarim Block, NW China: Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt. Journal of Asian Earth Sciences, 47: 5–20. https://doi.org/10.1016/j.jseaes.2011.05.018 |
Zhang, C. L., Li, H. K., 2023. The Tarim Craton in the Northwest of China. International Geology Review, 65(4): 607–643. https://doi.org/10.1080/00206814.2022.2056719 |
Zhou, C., Bao, H., Peng, Y., et al., 2010. Timing the Deposition of 17O-Depleted Barite at the Aftermath of Nantuo Glacial Meltdown in South China. Geology, 38(10): 903–906. https://doi.org/10.1130/g31224.1 |
Zhou, C. M., Guan, C. G., Cui, H., et al., 2016. Methane-Derived Authigenic Carbonate from the Lower Doushantuo Formation of South China: Implications for Seawater Sulfate Concentration and Global Carbon Cycle in the Early Ediacaran Ocean. Palaeogeography Palaeoclimatology Palaeoecology, 461: 145–155. https://doi.org/10.1016/j.palaeo.2016.08.017 |
Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019a. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3): 251–254. https://doi.org/10.1130/g45719.1 |
Zhou, C. M., Yuan, X. L., Xiao, S. H., et al., 2019b. Ediacaran Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 7–24. https://doi.org/10.1007/s11430-017-9216-2 |
Zhou, G. H., Luo, T. Y., Zhou, M. Z., et al., 2017. A Ubiquitous Hydrothermal Episode Recorded in the Sheet-Crack Cements of a Marinoan Cap Dolostone of South China: Implication for the Origin of the Extremely 13C-Depleted Calcite Cement. Journal of Asian Earth Sciences, 134: 63–71. https://doi.org/10.1016/j.jseaes.2016.11.007 |
Zhu, G. Y., Chen, Z. Y., Chen, W. Y., et al., 2021. Revisiting to the Neoproterozoic Tectonic Evolution of the Tarim Block, NW China. Precambrian Research, 352: 106013. https://doi.org/10.1016/j.precamres.2020.106013 |
Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225: 7–28. https://doi.org/10.1016/j.precamres.2011.07.019 |
Zhu, M. Y., 2016. Review on Global Neoproterozoic Strata Research. In: Sun, S., Wang T., eds., Geology and Hydrocarbon Resources of the Middle–Upper Proterozoic in East China. Science Press, Beijing. 3–24 (in Chinese) |