Citation: | David A. Wood. Kerogen Kinetic Distributions and Simulations Provide Insights into Petroleum Transformation Fraction (TF) Profiles of Organic-Rich Shales. Journal of Earth Science, 2024, 35(3): 747-757. doi: 10.1007/s12583-024-1981-0 |
Two hundred and fifty single first-order Arrhenius reactions are simulated to generate S2 pyrograms at three heating rates 25, 15, and 5 ℃·min-1. The activation energy (
Arrhenius, S., 1889. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker Durch Säuren. Zeitschrift für Physikalische Chemie, 4(1): 226–248. https://doi.org/10.1515/zpch-1889-0416 |
Bai, H. C., Mao, N., Wang, R. H., et al., 2021. Kinetic Characteristics and Reactive Behaviors of HSW Vitrinite Coal Pyrolysis: A Comprehensive Analysis Based on TG-MS Experiments, Kinetics Models and ReaxFF MD Simulations. Energy Reports, 7: 1416–1435. https://doi.org/10.1016/j.egyr.2021.09.100 |
Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649–2657. https://doi.org/10.1016/0016-7037(89)90136-1 |
Burnham, A. K., Peters, K. E., Schenk, O., 2017. The Evolution of Vitrinite Reflectance Models. American Association of Petroleum Geologist Search and Discover Article, 41982: 24 |
Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103: 606–616. https://doi.org/10.1016/j.fuel.2012.06.119 |
Dieckmann, V., 2005. Modelling Petroleum Formation from Heterogeneous Source Rocks: The Influence of Frequency Factors on Activation Energy Distribution and Geological Prediction. Marine and Petroleum Geology, 22(3): 375–390. https://doi.org/10.1016/j.marpetgeo.2004.11.002 |
Espitalié, J., Madec, M., Tissot, B., 1980. Role of Mineral Matrix in Kerogen Pyrolysis: Influence on Petroleum Generation and Migration. AAPG Bulletin, 64: 59–66. https://doi.org/10.1306/2f918928-16ce-11d7-8645000102c1865d |
Gorbachev, V. M., 1975. A Solution of the Exponential Integral in the Non-Isothermal Kinetics for Linear Heating. Journal of Thermal Analysis, 8(2): 349–350. https://doi.org/10.1007/bf01904012 |
Hackley, P. C., Lewan, M., 2018. Understanding and Distinguishing Reflectance Measurements of Solid Bitumen and Vitrinite Using Hydrous Pyrolysis: Implications to Petroleum Assessment. Bulletin of the American Association of Petroleum Geologists, 102(6): 1119–1140. https://doi.org/10.1306/08291717097 |
Hui, S. S., Pang, X. Q., Jiang, F. J., et al., 2024. Quantitative Effect of Kerogen Type on the Hydrocarbon Generation Potential of Paleogene Lacustrine Source Rocks, Liaohe Western Depression, China. Petroleum Science, 21(1): 14–30. https://doi.org/10.1016/j.petsci.2023.09.004 |
Jarvie, D., Claxton, B., Henk, F., et al., 2001. Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. AAPG National Convention, June 3–6, 2001, Denver |
Jones, R. W., 1987. Organic Facies. In: Brooks, J., Welte, D., eds., Advances in Petroleum Geochemistry. Academic Press, New York. 1–90 |
Katz, B. J., Lin, F., 2021. Consideration of the Limitations of Thermal Maturity with Respect to Vitrinite Reflectance, Tmax, and other Proxies. AAPG Bulletin, 105(4): 695–720. https://doi.org/10.1306/09242019261 |
Labus, M., Matyasik, I., Ziemianin, K., 2023. Thermal Decomposition Processes in Relation to the Type of Organic Matter, Mineral and Maceral Composition of Menilite Shales. Energies, 16(11): 4500. https://doi.org/10.3390/en16114500 |
Lewan, M. D., 1985. Evaluation of Petroleum Generation by Hydrous Phrolysis Experimentation. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 315(1531): 123–134. https://doi.org/10.1098/rsta.1985.0033 |
Lewan, M. D., Pawlewicz, M. J., 2017. Reevaluation of Thermal Maturity and Stages of Petroleum Formation of the Mississippian Barnett Shale, Fort Worth Basin, Texas. Bulletin of the American Association of Petroleum Geologists, 101(12): 1945–1970. https://doi.org/10.1306/01251716053 |
Li, Y. Y., Zhou, S. X., Li, J., et al., 2024. Research Progress of Hydrocarbon Generation Kinetics Based on Gold Tube. Journal of Natural Gas Geoscience, 9(1): 53–67. https://doi.org/10.1016/j.jnggs.2023.11.005 |
Mastalerz, M., Drobniak, A., Stankiewicz, A. B., 2018. Origin, Properties, and Implications of Solid Bitumen in Source-Rock Reservoirs: A Review. International Journal of Coal Geology, 195: 14–36. https://doi.org/10.1016/j.coal.2018.05.013 |
Peters, K. E., Cassa, M. R., 1994. Applied Source-Rock Geochemistry. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System: From Source to Trap. American Association of Petroleum Geologists Memoir, 60: 93–120. |
Peters, K. E., Burnham, A. K., Walters, C. C., 2015. Petroleum Generation Kinetics: Single versus Multiple Heating-Ramp Open-System Pyrolysis. AAPG Bulletin, 99(4): 591–616. https://doi.org/10.1306/11141414080 |
Peters, K. E., Burnham, A. K., Walters, C. C., 2016. Petroleum Generation Kinetics: Single versus Multiple Heating-Ramp Open-System Pyrolysis: Reply. AAPG Bulletin, 100(4): 690–694. https://doi.org/10.1306/01141615244 |
Peters, K. E., Burnham, A. K., Walters, C. C., et al., 2018. Guidelines for Kinetic Input to Petroleum System Models from Open-System Pyrolysis. Marine and Petroleum Geology, 92: 979–986. https://doi.org/10.1016/j.marpetgeo.2017.11.024 |
Tissot, B. P., Espitalié, J., 1975. L’evolution Thermique de La Matière Organique des Sédiments: Applications D’une Simulation Mathéma-tique. Potentiel Pétrolier des Bassins Sédimentaires de Reconstitution de L’histoire Thermique des Sédiments. Revue de L’Institut Français du Pétrole, 30(5): 743–778. https://doi.org/10.2516/ogst:1975026 |
Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, New York. 699 |
Tegelaar, E. W., Noble, R. A., 1994. Kinetics of Hydrocarbon Generation as a Function of the Molecular Structure of Kerogen as Revealed by Pyrolysis-Gas Chromatography. Organic Geochemistry, 22(3/4/5): 543–574. https://doi.org/10.1016/0146-6380(94)90125-2 |
Ungerer, P., Pelet, R., 1987. Extrapolation of the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins. Nature, 327(6117): 52–54. https://doi.org/10.1038/327052a0 |
Ungerer, P., 1990. State of the Art of Research in Kinetic Modelling of Oil Formation and Expulsion. In: Durand, B., Behar, F., eds., Advances in Organic Geochemistry. Organic Geochemistry, 16(1–3): 1–25 |
Waliczek, M., Machowski, G., Poprawa, P., et al., 2021. A Novel VRo, T, and S Indices Conversion Formulae on Data from the Fold-and-Thrust Belt of the Western Outer Carpathians (Poland). International Journal of Coal Geology, 234: 103672. https://doi.org/10.1016/j.coal.2020.103672 |
Waples, D. W., 2016. Petroleum Generation Kinetics: Single versus Multiple Heating-Ramp Open-System Pyrolysis: Discussion. AAPG Bulletin, 100(4): 683–689. https://doi.org/10.1306/01141615146 |
Waples, D. W., Yang, S. Y., 2023. A Method for Assigning Pre-Exponential Factors for Kerogen Kinetics, Calibrated with Easy%RoDL, and Comparison with EASY%Ro. Advances in Geo-Energy Research, 7(1): 1–6. https://doi.org/10.46690/ager.2023.01.01 |
Wood, D. A., 1988. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72(2): 115–135. https://doi.org/10.1306/703c8263-1707-11d7-8645000102c1865d |
Wood, D. A., Hazra, B., 2018. Pyrolysis S2-Peak Characteristics of Raniganj Shales (India) Reflect Complex Combinations of Kerogen Kinetics and other Processes Related to Different Levels of Thermal Maturity. Advances in Geo-Energy Research, 2(4): 343–368. https://doi.org/10.26804/ager.2018.04.01 |
Wood, D. A., 2018. Kerogen Conversion and Thermal Maturity Modelling of Petroleum Generation: Integrated Analysis Applying Relevant Kerogen Kinetics. Marine and Petroleum Geology, 89: 313–329. https://doi.org/10.1016/j.marpetgeo.2017.10.003 |
Wood, D. A., 2019. Establishing Credible Reaction-Kinetics Distributions to Fit and Explain Multi-Heating Rate S2 Pyrolysis Peaks of Kerogens and Shales. Advances in Geo-Energy Research, 3(1): 1–28. https://doi.org/10.26804/ager.2019.01.01 |
Wood, D. A., 2022. Shale Kerogen Kinetics from Multiheating Rate Pyrolysis Modeling with Geological Time-Scale Perspectives for Petroleum Generation. Sustainable Geoscience for Natural Gas Subsurface Systems. Elsevier, Amsterdam. 159–195. https://doi.org/10.1016/b978-0-323-85465-8.00001-7 |