Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Turn off MathJax
Article Contents
Meysam Hemmati, Yaser Ahmadi, Behzad Vaferi, Ali Hosin Alibak, David A. Wood. Surveying organic matter, thermal maturity level, and paleo-environmental conditions by considering biomarker and stable carbon isotopic analysis. Journal of Earth Science. doi: 10.1007/s12583-024-1984-x
Citation: Meysam Hemmati, Yaser Ahmadi, Behzad Vaferi, Ali Hosin Alibak, David A. Wood. Surveying organic matter, thermal maturity level, and paleo-environmental conditions by considering biomarker and stable carbon isotopic analysis. Journal of Earth Science. doi: 10.1007/s12583-024-1984-x

Surveying organic matter, thermal maturity level, and paleo-environmental conditions by considering biomarker and stable carbon isotopic analysis

doi: 10.1007/s12583-024-1984-x
  • Available Online: 07 Mar 2024
  • Biomarker and stable carbon isotope analyses are presented for the Garau formation of the Cretaceous age, an important source rock in western Iran, to reveal its potential as an oil-prone source rock. The C28/C29sterane ratio value range (0.72 to 0.83) of bitumen samples from the formation suggests that they were likely formed during phytoplankton blooms. Sterane, hopane, and isoprenoid/n-alkane ratios indicate that the formation's organic matter predominantly consists of algae, and bacteria, accompanied by some reworked material derived from higher plants. Due to the predominance of anoxic conditions and the actions of sulfate-reducing bacteria, the bitumen present is enriched with sulfur compounds. The percentages of saturates, aromatics, and nitrogen-sulfur-oxygen (NSO) fractions in the bitumen samples classify them as naphthenic oils. Isotope analysis reveals that biodegradation and water-washing have reduced the concentrations of some volatile saturates and low molecular weight aromatics in the bitumen samples. These actions have resulted in distinctive δ13C values for the formation's kerogen and bitumen fractions. The formation's organic matter has been subjected to high-temperature thermal regimes and has entered the oil-generation window at the sampled localities, with vitrinite reflectance (%RC) varying between 0.7 % and 0.75 %.


  • loading
  • Adegoke, A. K., Sarki Yandoka, B. M., Abdullah, W. H., et al., 2015. Molecular geochemical evaluation of Late Cretaceous sediments from Chad (Bornu) Basin, NE Nigeria: implications for paleodepositional conditions, source input and thermal maturation. Arabian Journal of Geosciences, 8: 1591-1609.
    Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307(9): 1064-1095.
    Alberdi, M., López. L., 2000. Biomarker 18α (H)-oleanane: a geochemical tool to assess Venezuelan petroleum systems. Journal of South American Earth Sciences, 13(8): 751-759.
    Alizadeh, B., Jahangard, A. A., Alipour, M., et al., 2020. Geochemical evaluation of Khami Group oils in the South Dezful Embayment, Iran. Journal of Petroleum Exploration and Production Technology, 10(8): 3241-3254.
    Alizadeh, B., Seyedali, S. R., Habibnia. B., 2019. Organic geochemical characteristics of Middle to Late Eocene Shahbazan Formation in Dezful Embayment, SW Iran: A case study from Qaleh-Nar oilfield. Petroleum Science and Technology, 37(23): 2322-2329.
    Anyanwu, T. C., Ekpo, B. O., Oriji. B. A., 2022. Biomarker application in the recognition of the geochemical characteristics of crude oils from the five depobelts of the Niger Delta basin, Nigeria. Iranian Journal of Earth Sciences, 14(1): 1-17.
    Arthur, M. A., Brumsack, H. J., Jenkyns, H. C., et al., 1990. Stratigraphy, geochemistry and paleoceanography of organic-carbon rich Cretaceous sequences. In: Ginsburg, R.N., Beaudoin, B., eds., Cretaceous Resources, Events and Rhythms. NATO ASI Series. 304. Kluwer Academic Publishers. Dordrecht. 75-119.
    Bai, B., Wang, J., Zhai, Z., et al., 2017. The penetration processes of red mud filtrate in a porous medium by seepage. Transport in Porous Media, 117: 207-227.
    Behar, F., Beaumont, V. D. E. B., Penteado. H. D. B., 2001. Rock-Eval 6 technology: performances and developments. Oil and Gas Science and Technology, 56(2): 111-134.
    Bjorøy, M., Hall, K., Gillyon, P., et al., 1991. Carbon isotope variations in n-alkanes and isoprenoids of whole oils. Chemical Geology, 93(1-2): 13-20.
    Bordenave, M. L., 1993. Applied Petroleum Geochemistry. Editions Technip, Paris..
    Bordenave, M. L., Burwood. R., 1990. Source rock distribution and maturation in the Zagros orogenic belt: provenance of the Asmari and Bangestan reservoir oil accumulations. Organic Geochemistry, 16(1-3): 369-387.
    Chen, D., Pang, X., Li, L., et al., 2021. Organic geochemical characteristics and shale oil potential of the middle Eocene early-mature shale in the Nanpu Sag, Bohai Bay Basin, Eastern China. Marine and Petroleum Geology, 133: 105248.
    Damsté, J. S. S., Kenig, F., Koopmans, M. P., et al., 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9): 1895-1900.
    Dashtbozorg, M., Bakhtiari, A. R., Shushizadeh, M. R., et al., 2019. Quantitative evaluation of n-alkanes, PAHs, and petroleum biomarker accumulation in beach-stranded tar balls and coastal surface sediments in the Bushehr Province, Persian Gulf (Iran). Marine Pollution Bulletin, 146: 801-815.
    England, W. A., 2007. Reservoir geochemistry—A reservoir engineering perspective. Journal of Petroleum Science and Engineering, 58(3-4): 344-354.
    Ezampanah, Y., Sadeghi, A., Jamali, A. M., et al., 2013. Biostratigraphy of the Garau Formation (Berriasian?-lower Cenomanian) in central part of Lurestan zone, northwest of Zagros, Iran. Cretaceous Research, 46: 101-113.
    Farzipour-Saein, A., Yassaghi, A., Sherkati, S., et al., 2009. Basin evolution of the Lurestan region in the Zagros fold-and-thrust belt, Iran. Journal of Petroleum Geology, 32(1): 5-19.
    Föllmi, K. B., 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research, 35: 230-257.
    Hazra, B., Wood, D.A., Mani, D., et al., 2019. Sedimentary Biomarkers and Their Stable Isotope Proxies in Evaluation of Shale Source and Reservoir Rocks. in: Hazra, B., Wood, D. A., Mani, D., Singh, P. K., Singh, A. K., eds., Evaluation of Shale Source Rocks and Reservoirs. Springer, Berlin. 85-106.
    Hemmati, M., Ahmadi. Y., 2021a. Investigation of origin, sedimentary environment and preservation of organic matter: A case study in Garau Formation. Iranian Journal of Oil and Gas Science and Technology, 11(1): 1-15.
    Hemmati, M., Ahmadi. Y., 2021b. Detection of heavy bitumen contaminations with using corrected Rock-Eval pyrolysis data. Iranian Journal of Oil and Gas Science and Technology, 11(2): 1-15.
    Homke, S., Vergés, J., Serra-Kiel, J., et al., 2009. Late Cretaceous–Paleocene formation of the proto–Zagros foreland basin, Lurestan Province, SW Iran, Geological Society of America Bulletin, 121(7-8): 963-978.
    Hughes, W. B., Holba, A. G., Dzou. L. I., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta, 59(17): 3581-3598.
    Jurek, K. J., Kowalski. A., 2022. Origin of Carpathian ozokerite deposits: determined from biomarkers and aromatic hydrocarbons distributions. Fuel, 310: 122357.
    Landais, P., 1997. Petroleum Geochemistry and Geology. Energy Fuels, 11(6): 1314.
    Leckie, R. M., Bralower, T. J., Cashman. R., 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17: 13-29.
    Liu, J., Geng, A., Xiong. Y., 2006. The application of stable carbon and hydrogen isotopic compositions of individual n-alkanes to Paleozoic oil/source rock correlation enigmas in the Huanghua depression, China. Journal of Petroleum Science and Engineering, 54(1-2): 70-78.
    Manshad, A. K., Pashaki, R. S., Ali, J. A., et al., 2021. Geochemical study of the early cretaceous Fahliyan oil reservoir in the northwest Persian Gulf. Journal of Petroleum Exploration and Production Technology, 11(6): 2435-2447.
    Mansuy, L., Philp, R. P., Allen. J., 1997. Source identification of oil spills based on the isotopic composition of individual components in weathered oil samples. Environmental Science and Technology, 31(12): 3417-3425.
    McKirdy, D. M., 1983. A geochemical comparison of some crude oils from pre-Ordovician carbonate rocks. In Proceedings of the International Meeting on Organic Geochemistry, 10: 99-107. 1983.
    Moldowan, J. M., Seifert, W. K., Gallegos. E. J., 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69(8): 1255-1268.
    Motiei, H., 1993. Stratigraphy of Zagros, Treatise on the Geology of Iran. Geological Survey of Iran, 281-289.
    Nichols, P. D., Palmisano, A. C., Rayner, M. S., et al., 1990. Occurrence of novel C30 sterols in Antarctic sea-ice diatom communities during a spring bloom. Organic Geochemistry, 15(5): 503-508.
    Orr, W. L., 1986. Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. Organic Geochemistry, 10(1-3): 499-516.
    Palmer, S. E., 1984. Effect of water washing on C15+ hydrocarbon fraction of crude oils from northwest Palawan, Philippines. AAPG Bulletin, 68(2): 137-149.
    Pang, J. W., Hu, J. C., 2020. Structural Evolution of Lorestan salient in North Zagros Mountain Belt, Iran. In EGU General Assembly Conference Abstracts, p. 7803.
    Peters, K. E., Fowler. M. G., 2002. Application of petroleum geochemistry to exploration and reservoir management. Organic Geochemistry, 33(1): 5-36.
    Peters, K.E., Cassa, M.R., 1994. Applied source rock geochemistry. In: Magoon, L. B., Dow W. G., eds. The Petroleum System: From Source to Trap, American Association of Petroleum Geologists, Tulsa, 93-120.
    Peters, K. E., Moldowan. J. M., 1993. The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, New Jersey.
    Peters, K. E., Walters, C. C., Moldowan. J. M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History. Cambridge University Press, United Kingdom.
    Pilote, M., André, C., Turcotte, P., et al., 2018. Metal bioaccumulation and biomarkers of effects in caged mussels exposed in the Athabasca oil sands area. Science of the Total Environment, 610: 377-390.
    Powell, T. G., Mokirdy. D. M., 1973. The effect of source material, rock type and diagenesis on the n-alkane content of sediments. Geochimica et Cosmochimica Acta, 37(3): 623-633.
    Qiu, R., Liang, Y.T., Liao, Q., et al., 2022. Primary logistics planning of oil products under the imbalance of supply and demand. Petroleum Science, 19(4): 1915-1925.
    Radke, M., 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and Petroleum Geology, 5(3): 224-236.
    Radke, M., Welte. D. H., 1983. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. Advances in Organic Geochemistry, 1983: 504-512.
    Safaei-Farouji, M., Kamali, M. R., Rahimpour-Bonab, H., T. et al., 2021. Organic geochemistry, oil-source rock, and oil-oil correlation study in a major oilfield in the Middle East. Journal of Petroleum Science and Engineering, 207: 109074.
    Seifert, W. K., Moldowan. J. M., 1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42(1): 77-95.
    Seifert, W. K., Moldowan. J. M., 1986. Use of biological markers in petroleum exploration. Methods in Geochemistry and Geophysics, 24: 261-290.
    Sofer, Z., 1984. Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. AAPG Bulletin, 68(1): 31-49.
    Song, D., He, D., Wang. S., 2013. Source rock potential and organic geochemistry of carboniferous source rocks in Santanghu Basin, NW China. Journal of Earth Science, 24: 355-370.
    Song, J., Littke, R., Weniger, P., et al., 2015. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe. International Journal of Coal Geology, 150-151: 127-153.
    Song, Y., Gilleaudeau, G. J., Algeo, T. J., et al., 2021. Biomarker evidence of algal-microbial community changes linked to redox and salinity variation, Upper Devonian Chattanooga Shale (Tennessee, USA). GSA Bulletin, 133(1-2): 409-424.
    Tissot, B. P., Welte. D. H., 1984. Petroleum formation and occurrence. Springer-Verlag, Heidelberg.
    Traverse, A., 2007. Paleopalynology. Springer, Berlin.
    Tyson, R. V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Springer, Netherlands.
    Walter, J. M., Bagi, A., Pampanin. D. M., 2019. Insights into the potential of the Atlantic cod gut microbiome as biomarker of oil contamination in the marine environment. Microorganisms, 7(7): 209.
    Wood, D. A., Hazra. B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5): 758–778.
    Xi, Z., Xiaoming, Z., Jiawang, G., et al., 2023. Karst topography paces the deposition of lower Permian, organic-rich, marine–continental transitional shales in the southeastern Ordos Basin, northwestern China. AAPG Bulletin, Accepted Manuscript, doi: 10.1306/11152322091.
    Xu, W., Yan, W., Chen, Z., et al., 2014. Organic matters and lipid biomarkers in surface sediments from the northern South China Sea: origins and transport. Journal of Earth Science, 25: 189-196.
    Xu, Z., Li, X., Li, J., et al., 2022. Characteristics of source rocks and genetic origins of natural gas in deep formations, Gudian Depression, Songliao Basin, NE China. ACS Earth and Space Chemistry, 6: 1750-1771.
    Younes, M. A., 2001. Source rock–dependent biomarker properties and stable carbon isotope composition of crude oils from west bakr fields, onshore Gulf of Suez, Egypt: a case study. Petroleum Science and Technology, 19(9-10): 1197-1218.
    Zhu, G., Liu, Y., Shi, P., et al., 2022. Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China. Earth System Science Data, 14(8): 3773-3789.
    Zuo, J., Peng, S., Qi, Y., et al., 2018. Carbon-isotope excursions recorded in the Cambrian system, South China: Implications for mass extinctions and sea-level fluctuations. Journal of Earth Science, 29: 479-491.
    Zuo, R., 2021. Mineral exploration using subtle or negative geochemical anomalies. Journal of Earth Science, 32: 439-454.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(94) PDF downloads(47) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint