Citation: | Meysam Hemmati, Yaser Ahmadi, Behzad Vaferi, Ali Hosin Alibak, David A. Wood. Surveying Organic Matter, Thermal Maturity Level, and Paleo-Environmental Conditions by Considering Biomarker and Stable Carbon Isotopic Analysis. Journal of Earth Science, 2025, 36(2): 428-440. doi: 10.1007/s12583-024-1984-x |
Biomarker and stable carbon isotope analyses are presented for the Garau Formation of the Cretaceous Age, an important source rock in western Iran, to reveal its potential as an oil-prone source rock. The C28/C29 sterane ratio value range (0.72 to 0.83) of bitumen samples from the formation suggests that they were likely formed during phytoplankton blooms. Sterane, hopane, and isoprenoid/
Adegoke, A. K., Sarki Yandoka, B. M., Abdullah, W. H., et al., 2015. Molecular Geochemical Evaluation of Late Cretaceous Sediments from Chad (Bornu) Basin, NE Nigeria: Implications for Paleodepositional Conditions, Source Input and Thermal Maturation. Arabian Journal of Geosciences, 8(3): 1591–1609. https://doi.org/10.1007/s12517-014-1341-y |
Alavi, M., 2007. Structures of the Zagros Fold-Thrust Belt in Iran. American Journal of Science, 307(9): 1064–1095. https://doi.org/10.2475/09.2007.02 |
Alberdi, M., López, L., 2000. Biomarker 18α(H)-Oleanane: A Geochemical Tool to Assess Venezuelan Petroleum Systems. Journal of South American Earth Sciences, 13(8): 751–759. https://doi.org/10.1016/s0895-9811(00)00055-9 |
Alizadeh, B., Jahangard, A. A., Alipour, M., et al., 2020. Geochemical Evaluation of Khami Group Oils in the South Dezful Embayment, Iran. Journal of Petroleum Exploration and Production Technology, 10(8): 3241–3254. https://doi.org/10.1007/s13202-020-00894-5 |
Alizadeh, B., Seyedali, S. R., Habibnia, B., 2019. Organic Geochemical Characteristics of Middle to Late Eocene Shahbazan Formation in Dezful Embayment, SW Iran: A Case Study from Qaleh-Nar Oilfield. Petroleum Science and Technology, 37(23): 2322–2329. https://doi.org/10.1080/10916466.2018.1522335 |
Anyanwu, T. C., Ekpo, B. O., Oriji, B. A., 2022. Biomarker Application in the Recognition of the Geochemical Characteristics of Crude Oils from the Five Depobelts of the Niger Delta Basin, Nigeria. Iranian Journal of Earth Sciences, 14(1): 1–17 |
Arthur, M. A., Brumsack, H. J., Jenkyns, H. C., et al., 1990. Stratigraphy, Geochemistry, and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences. Cretaceous Resources, Events and Rhythms. Springer Netherlands, Dordrecht, 75–119. |
Bai, B., Wang, J. Q., Zhai, Z. Q., et al., 2017. The Penetration Processes of Red Mud Filtrate in a Porous Medium by Seepage. Transport in Porous Media, 117(2): 207–227. https://doi.org/10.1007/s11242-017-0829-9 |
Behar, F., Beaumont, V., de B Penteado, H. L., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56(2): 111–134. https://doi.org/10.2516/ogst:2001013 |
Bjorøy, M., Hall, K., Gillyon, P., et al., 1991. Carbon Isotope Variations in N-Alkanes and Isoprenoids of Whole Oils. Chemical Geology, 93(1/2): 13–20. https://doi.org/10.1016/0009-2541(91)90061-u |
Bordenave, M. L., 1993. Applied Petroleum Geochemistry. Editions Technip, Paris |
Bordenave, M. L., Burwood, R., 1990. Source Rock Distribution and Maturation in the Zagros Orogenic Belt: Provenance of the Asmari and Bangestan Reservoir Oil Accumulations. Organic Geochemistry, 16(1/2/3): 369–387. https://doi.org/10.1016/0146-6380(90)90055-5 |
Chen, D., Pang, X. Q., Li, L., et al., 2021. Organic Geochemical Characteristics and Shale Oil Potential of the Middle Eocene Early-Mature Shale in the Nanpu Sag, Bohai Bay Basin, Eastern China. Marine and Petroleum Geology, 133: 105248. https://doi.org/10.1016/j.marpetgeo.2021.105248 |
Dashtbozorg, M., Riyahi Bakhtiari, A., Shushizadeh, M. R., et al., 2019. Quantitative Evaluation of N-Alkanes, PAHs, and Petroleum Biomarker Accumulation in Beach-Stranded Tar Balls and Coastal Surface Sediments in the Bushehr Province, Persian Gulf (Iran). Marine Pollution Bulletin, 146: 801–815. https://doi.org/10.1016/j.marpolbul.2019.07.023 |
England, W. A., 2007. Reservoir Geochemistry—A Reservoir Engineering Perspective. Journal of Petroleum Science and Engineering, 58(3/4): 344–354. https://doi.org/10.1016/j.petrol.2005.12.012 |
Ezampanah, Y., Sadeghi, A., Jamali, A. M., et al., 2013. Biostratigraphy of the Garau Formation (Berriasian?–Lower Cenomanian) in Central Part of Lurestan Zone, Northwest of Zagros, Iran. Cretaceous Research, 46: 101–113. https://doi.org/10.1016/j.cretres.2013.06.007 |
Farzipour-Saein, A., AYassaghi, Sherkati, S., 2009. Basin Evolution of the Lurestan Region in the Zagros Fold-and-Thrust Belt, Iran. Journal of Petroleum Geology, 32(1): 5–19 |
Föllmi, K. B., 2012. Early Cretaceous Life, Climate and Anoxia. Cretaceous Research, 35: 230–257. https://doi.org/10.1016/j.cretres.2011.12.005 |
Hazra, B., Wood, D. A., Mani, D., et al., 2019. Sedimentary Biomarkers and Their Stable Isotope Proxies in Evaluation of Shale Source and Reservoir Rocks. Petroleum Engineering. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-13042-8_6 |
Hemmati, M., Ahmadi, Y., 2021a. Investigation of Origin, Sedimentary Environment and Preservation of Organic Matter: A Case Study in Garau Formation. Iranian Journal of Oil and Gas Science and Technology, 11(1): 1–15 |
Hemmati, M., Ahmadi. Y., 2021b. Detection of Heavy Bitumen Contaminations with Using Corrected Rock-Eval Pyrolysis Data. Iranian Journal of Oil and Gas Science and Technology, 11(2): 1–15 |
Homke, S., Vergés, J., Serra-Kiel, J., et al., 2009. Late Cretaceous–Paleocene Formation of the Proto-Zagros Foreland Basin, Lurestan Province, SW Iran. GSA Bulletin, 121(7/8): 963–978. https://doi.org/10.1130/b26035.1 |
Hughes, W. B., Holba, A. G., Dzou, L. I. P., 1995. The Ratios of Dibenzothiophene to Phenanthrene and Pristane to Phytane as Indicators of Depositional Environment and Lithology of Petroleum Source Rocks. Geochimicaet Cosmochimica Acta, 59(17): 3581–3598. https://doi.org/10.1016/0016-7037(95)00225-o |
Jurek, K. J., Kowalski, A., 2022. Origin of Carpathian Ozokerite Deposits: Determined from Biomarkers and Aromatic Hydrocarbons Distributions. Fuel, 310: 122357. https://doi.org/10.1016/j.fuel.2021.122357 |
Landais, P., 1997. Petroleum Geochemistry and Geology. Energy Fuels, 11(6): 1314 |
Leckie, R. M., Bralower, T. J., Cashman, R., 2002. Oceanic Anoxic Events and Plankton Evolution: Biotic Response to Tectonic Forcing during the Mid-Cretaceous. Paleoceanography, 17(3): 13–29. https://doi.org/10.1029/2001pa000623 |
Liu, J. P., Geng, A. S., Xiong, Y. Q., 2006. The Application of Stable Carbon and Hydrogen Isotopic Compositions of Individual N-Alkanes to Paleozoic Oil/Source Rock Correlation Enigmas in the Huanghua Depression, China. Journal of Petroleum Science and Engineering, 54(1/2): 70–78. https://doi.org/10.1016/j.petrol.2006.07.003 |
Manshad, A. K., Pashaki, R. S., Ali, J. A., et al., 2021. Geochemical Study of the Early Cretaceous Fahliyan Oil Reservoir in the Northwest Persian Gulf. Journal of Petroleum Exploration and Production Technology, 11(6): 2435–2447. https://doi.org/10.1007/s13202-021-01178-2 |
Mansuy, L., Philp, R. P., Allen, J., 1997. Source Identification of Oil Spills Based on the Isotopic Composition of Individual Components in Weathered Oil Samples. Environmental Science & Technology, 31(12): 3417–3425. https://doi.org/10.1021/es970068n |
McKirdy, D. M., 1983. A Geochemical Comparison of Some Crude Oils from Pre-Ordovician Carbonate Rocks. Proceedings of the International Meeting on Organic Geochemistry, 10: 99–107 |
Moldowan, J. M., Seifert, W. K., Gallegos, E. J., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG Bulletin, 69(8): 1255–1268. https://doi.org/10.1306/ad462bc8-16f7-11d7-8645000102c1865d |
Motiei, H., 1993. Stratigraphy of Zagros, Treatise on the Geology of Iran. Geological Survey of Iran, 281–289 |
Nichols, P. D., Palmisano, A. C., Rayner, M. S., et al., 1990. Occurrence of Novel C30 Sterols in Antarctic Sea-Ice Diatom Communities during a Spring Bloom. Organic Geochemistry, 15(5): 503–508. https://doi.org/10.1016/0146-6380(90)90096-i |
Orr, W. L., 1986. Kerogen/Asphaltene/Sulfur Relationships in Sulfur-Rich Monterey Oils. Organic Geochemistry, 10(1/2/3): 499–516. https://doi.org/10.1016/0146-6380(86)90049-5 |
Palmer, S. E., 1984. Effect of Water Washing on C15+ Hydrocarbon Fraction of Crude Oils from Northwest Palawan, Philippines. AAPG Bulletin, 68: 137–149. https://doi.org/10.1306/ad4609ea-16f7-11d7-8645000102c1865d |
Pang, J. W., Hu, J. C., 2020. Structural Evolution of Lorestan Salient in North Zagros Mountain Belt, Iran. EGU General Assembly Conference, 3–8 May 2020, Vienna |
Peters, K. E., Fowler, M. G., 2002. Applications of Petroleum Geochemistry to Exploration and Reservoir Management. Organic Geochemistry, 33(1): 5–36. https://doi.org/10.1016/s0146-6380(01)00125-5 |
Peters, K. E., Moldowan, J. M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, New Jersey |
Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History. Cambridge University Press, United Kingdom |
Peters, K. E., Cassa, M. R., 1994. Applied Source Rock Geochemistry. In: Magoon, L. B., Dow W. G., eds., The Petroleum System: From Source to Trap, American Association of Petroleum Geologists, Tulsa |
Pilote, M., André, C., Turcotte, P., et al., 2018. Metal Bioaccumulation and Biomarkers of Effects in Caged Mussels Exposed in the Athabasca Oil Sands Area. The Science of the Total Environment, 610/611: 377–390. https://doi.org/10.1016/j.scitotenv.2017.08.023 |
Powell, T. G., Mokirdy, D. M., 1973. The Effect of Source Material, Rock Type and Diagenesis on the N-Alkane Content of Sediments. Geochimica et Cosmochimica Acta, 37(3): 623–633. https://doi.org/10.1016/0016-7037(73)90223-8 |
Qiu, R., Liang, Y. T., Liao, Q., et al., 2022. Primary Logistics Planning of Oil Products under the Imbalance of Supply and Demand. Petroleum Science, 19(4): 1915–1925. https://doi.org/10.1016/j.petsci.2022.03.021 |
Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224–236. https://doi.org/10.1016/0264-8172(88)90003-7 |
Radke, M., Welte. D. H., 1983. The Methylphenanthrene Index (MPI): A Maturity Parameter Based on Aromatic Hydrocarbons. Advances in Organic Geochemistry, 1983: 504–512 |
Safaei-Farouji, M., Kamali, M. R., Rahimpour-Bonab, H., et al., 2021. Organic Geochemistry, Oil-Source Rock, and Oil-Oil Correlation Study in a Major Oilfield in the Middle East. Journal of Petroleum Science and Engineering, 207: 109074. https://doi.org/10.1016/j.petrol.2021.109074 |
Seifert, W. K., Michael Moldowan, J., 1978. Applications of Steranes, Terpanes and Monoaromatics to the Maturation, Migration and Source of Crude Oils. Geochimica et Cosmochimica Acta, 42(1): 77–95. https://doi.org/10.1016/0016-7037(78)90219-3 |
Seifert, W. K., Moldowan, J. M., 1986. Use of Biological Markers in Petroleum Exploration. Methods in Geochemistry and Geophysics, 24: 261–290 |
Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., et al., 1995. Evidence for Gammacerane as an Indicator of Water Column Stratification. Geochimicaet Cosmochimica Acta, 59(9): 1895–1900. https://doi.org/10.1016/0016-7037(95)00073-9 |
Sofer, Z., 1984. Stable Carbon Isotope Compositions of Crude Oils: Application to Source Depositional Environments and Petroleum Alteration. AAPG Bulletin, 68(1): 31–49. https://doi.org/10.1306/ad460963-16f7-11d7-8645000102c1865d |
Song, D. F., He, D. F., Wang, S. R., 2013. Source Rock Potential and Organic Geochemistry of Carboniferous Source Rocks in Santanghu Basin, NW China. Journal of Earth Science, 24(3): 355–370. https://doi.org/10.1007/s12583-013-0339-9 |
Song, J. L., Littke, R., Weniger, P., et al., 2015. Shale Oil Potential and Thermal Maturity of the Lower Toarcian Posidonia Shale in NW Europe. International Journal of Coal Geology, 150/151: 127–153. https://doi.org/10.1016/j.coal.2015.08.011 |
Song, Y., Gilleaudeau, G. J., Algeo, T. J., et al., 2021. Biomarker Evidence of Algal-Microbial Community Changes Linked to Redox and Salinity Variation, Upper Devonian Chattanooga Shale (Tennessee, USA). GSA Bulletin, 133(1/2): 409–424. https://doi.org/10.1130/b35543.1 |
Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, Heidelberg |
Traverse, A., 2007. Paleopalynology. Springer, Berlin |
Tyson, R. V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Springer, Netherlands |
Walter, J. M., Bagi, A., Pampanin, D. M., 2019. Insights into the Potential of the Atlantic Cod Gut Microbiome as Biomarker of Oil Contamination in the Marine Environment. Microorganisms, 7(7): 209. https://doi.org/10.3390/microorganisms7070209 |
Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5): 758–778. https://doi.org/10.1007/s12583-017-0733-9 |
Xu, W. H., Yan, W., Chen, Z., et al., 2014. Organic Matters and Lipid Biomarkers in Surface Sediments from the Northern South China Sea: Origins and Transport. Journal of Earth Science, 25(1): 189–196. https://doi.org/10.1007/s12583-014-0412-z |
Xu, Z. J., Li, X. G., Li, J., et al., 2022. Characteristics of Source Rocks and Genetic Origins of Natural Gas in Deep Formations, Gudian Depression, Songliao Basin, NE China. ACS Earth and Space Chemistry, 6(7): 1750–1771. https://doi.org/10.1021/acsearthspacechem.2c00065 |
Younes, M. A., 2001. Source Rock-Dependent Biomarker Properties and Stable Carbon Isotope Composition of Crude Oils from West Bakr Fields, Onshore Gulf of Suez, Egypt: A Case Study. Petroleum Science and Technology, 19(9–10): 1197–1218 |
Zhang, X., Zhao, X. M., Ge, J. W., et al., 2024. Karst Topography Paces the Deposition of Lower Permian, Organic-Rich, Marine-Continental Transitional Shales in the Southeastern Ordos Basin, Northwestern China. AAPG Bulletin, 108(5): 849–875. https://doi.org/10.1306/11152322091 |
Zhu, G. F., Liu, Y. W., Shi, P. J., et al., 2022. Stable Water Isotope Monitoring Network of Different Water Bodies in Shiyang River Basin, a Typical Arid River in China. Earth System Science Data, 14(8): 3773–3789. https://doi.org/10.5194/essd-14-3773-2022 |
Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China: Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 29(3): 479–491. https://doi.org/10.1007/s12583-017-0963-x |
Zuo, R. G., 2021. Mineral Exploration Using Subtle or Negative Geochemical Anomalies. Journal of Earth Science, 32(2): 439–454. https://doi.org/10.1007/s12583-020-1079-2 |