Allen, S. K., Cox, S. C., Owens, I. F., 2011. Rock Avalanches and other Landslides in the Central Southern Alps of New Zealand: A Regional Study Considering Possible Climate Change Impacts. Landslides, 8(1): 33–48. https://doi.org/10.1007/s10346-010-0222-z |
Dai, C., Li, W. L., Wang, D., et al., 2021. Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. Journal of Earth Science, 32(5): 1092–1103. https://doi.org/10.1007/s12583-020-1380-0 |
Fan, X. M., Yunus, A. P., Yang, Y. H., et al., 2022. Imminent Threat of Rock-Ice Avalanches in High Mountain Asia. The Science of the Total Environment, 836: 155380. https://doi.org/10.1016/j.scitotenv.2022.155380 |
Farinotti, D., Huss, M., Fürst, J. J., et al., 2019. A Consensus Estimate for the Ice Thickness Distribution of all Glaciers on Earth. Nature Geoscience, 12: 168–173. https://doi.org/10.1038/s41561-019-0300-3 |
Giacona, F., Eckert, N., Corona, C., et al., 2021. Upslope Migration of Snow Avalanches in a Warming Climate. Proceedings of the National Academy of Sciences of the United States of America, 118(44): e2107306118. https://doi.org/10.1073/pnas.2107306118 |
Liu, Y., Qiu, H. J., Kamp, U., et al., 2024. Higher Temperature Sensitivity of Retrogressive Thaw Slump Activity in the Arctic Compared to the Third Pole. Science of the Total Environment, 914: 170007. https://doi.org/10.1016/j.scitotenv.2024.170007 |
Qiu, H. J., Su, L. L., Tang, B. Z., et al., 2024. The Effect of Location and Geometric Properties of Landslides Caused by Rainstorms and Earthquakes. Earth Surface Processes and Landforms. Online First. https://doi.org/10.1002/esp.5816 |
Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300–306. https://doi.org/10.1126/science.abh4455 [PubMed] |
Vöge, M., Frauenfelder, R., Ekseth, K., et al., 2015. The Use of SAR Interferometry for Landslide Mapping in the Indian Himalayas. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3: 857–863. https://doi.org/10.5194/isprsarchives-xl-7-w3-857-2015 |
Ye, B. F., Qiu, H. J., Tang, B. Z., et al., 2024. Creep Deformation Monitoring of Landslides in a Reservoir Area. Journal of Hydrology, 632: 130905. https://doi.org/10.1016/j.jhydrol.2024.130905 |
Yang, D. D., Qiu, H. J., Ye, B. F., et al., 2023. Distribution and Recurrence of Warming-Induced Retrogressive Thaw Slumps on the Central Qinghai-Tibet Plateau. Journal of Geophysical Research (Earth Surface), 128(8): e2022JF007047. https://doi.org/10.1029/2022jf007047 |
Zhang, T. T., Yin, Y. P., Li, B., et al., 2023. Characteristics and Dynamic Analysis of the February 2021 Long-Runout Disaster Chain Triggered by Massive Rock and Ice Avalanche at Chamoli, Indian Himalaya. Journal of Rock Mechanics and Geotechnical Engineering, 15(2): 296–308. https://doi.org/10.1016/j.jrmge.2022.04.003 |
Zhou, Y. S., Li, X., Zheng, D. H., et al., 2021. The Joint Driving Effects of Climate and Weather Changes Caused the Chamoli Glacier-Rock Avalanche in the High Altitudes of the India Himalaya. Science China Earth Sciences, 64(11): 1909–1921. https://doi.org/10.1007/s11430-021-9844-0 |