Andrews, E. R., Billen, M. I., 2009. Rheologic Controls on the Dynamics of Slab Detachment. Tectonophysics, 464(1): 60–69. https://doi.org/10.1016/j.tecto.2007.09.004 |
Aitchison, J. C., Ao, A., Bhowmik, S., et al., 2019. Tectonic Evolution of the Western Margin of the Burma Microplate Based on New Fossil and Radiometric Age Constraints. Tectonics, 38(5): 1718–1741. https://doi.org/10.1029/2018tc005049 |
Buys, J., Spandler, C., Holm, R. J., et al., 2014. Remnants of Ancient Australia in Vanuatu: Implications for Crustal Evolution in Island Arcs and Tectonic Development of the Southwest Pacific. Geology, 42(11): 939–942. https://doi.org/10.1130/g36155.1 |
Chen, Y., Huang, F., Shi, G. H., et al., 2018. Magnesium Isotope Composition of Subduction Zone Fluids as Constrained by Jadeitites from Myanmar. Journal of Geophysical Research: Solid Earth, 123(9): 7566–7585. https://doi.org/10.1029/2018jb015805 |
Cloetingh, S., Koptev, A., Kovács, I., et al., 2021. Plume Induced Sinking of Intracontinental Lithospheric Mantle: An Overlooked Mechanism of Subduction Initiation? Geochemistry, Geophysics, Geosystems, 22(2): e2020GC009482. https://doi.org/10.1029/2020gc009482 |
Duretz, T., Gerya, T. V., May, D. A., 2011. Numerical Modelling of Spon-taneous Slab Breakoff and Subsequent Topographic Response. Tectono-physics, 502(1): 244–256. https://doi.org/10.1016/j.tecto.2010.05.024 |
Freeburn, R., Bouilhol, P., Maunder, B., et al., 2017. Numerical Models of the Magmatic Processes Induced by Slab Breakoff. Earth and Planetary Science Letters, 478: 203–213. https://doi.org/10.1016/j.epsl.2017.09.008 |
Gerya, T., 2022. Numerical Modeling of Subduction: State of the Art and Future Directions. Geosphere, 18(2): 503–561. https://doi.org/10.1130/ges02416.1 |
Htay, H., Zaw, K., Oo, T. T., 2017. Chapter 6: The Mafic-Ultramafic (Ophiolitic) Rocks of Myanmar. Geological Society, London, Memoirs, 48(1): 117–141. https://doi.org/10.1144/m48.6 |
Jagoutz, O., Bouilhol, P., Schaltegger, U., et al., 2019. The Isotopic Evolution of the Kohistan Ladakh Arc from Subduction Initiation to Continent Arc Collision. In: Treloar, P. J., Searle, M. P., eds., Himalayan Tectonics: A Modern Synthesis. Geological Society, London, Special Publication, 483: 165–182. https://doi.org/10.1144/sp483.7 |
Khogenkumar, S., Singh, A. K., Singh, R. K. B., et al., 2016. Coexistence of MORB and OIB-Type Mafic Volcanics in the Manipur Ophiolite Com-plex, Indo-Myanmar Orogenic Belt, Northeast India: Implication for Heterogeneous Mantle Source at the Spreading Zone. Journal of Asian Earth Sciences, 116: 42–58. https://doi.org/10.1016/j.jseaes.2015.11.007 |
Lee, H. Y., Chung, S. L., Yang, H. M., 2016. Late Cenozoic Volcanism in Central Myanmar: Geochemical Characteristics and Geodynamic Significance. Lithos, 245: 174–190. https://doi.org/10.1016/j.lithos.2015.09.018 |
Li, J. X., Fan, W. M., Zhang, L. Y., et al., 2020. Prolonged Neo-Tethyan Magmatic Arc in Myanmar: Evidence from Geochemistry and Sr-Nd-Hf Isotopes of Cretaceous Mafic-Felsic Intrusions in the Banmauk-Kawlin Area. International Journal of Earth Sciences, 109(2): 649–668. https://doi.org/10.1007/s00531-020-01824-w |
Licht, A., Win, Z., Westerweel, J., et al., 2020. Magmatic History of Central Myanmar and Implications for the Evolution of the Burma Terrane. Gondwana Research, 87: 303–319. https://doi.org/10.1016/j.gr.2020.06.016 |
Liu, C. Z., Chung, S. L., Wu, F. Y., et al., 2016a. Tethyan Suturing in Southeast Asia: Zircon U-Pb and Hf-O Isotopic Constraints from Myanmar Ophiolites. Geology, 44(4): 311–314. https://doi.org/10.1130/g37342.1 |
Liu, C. Z., Zhang, C., Xu, Y., et al., 2016b. Petrology and Geochemistry of Mantle Peridotites from the Kalaymyo and Myitkyina Ophiolites (Myanmar): Implications for Tectonic Settings. Lithos, 264: 495–508. https://doi.org/10.1016/j.lithos.2016.09.013 |
Magni, V., Allen, M. B., van Hunen, J., et al., 2017. Continental Underplating after Slab Break-off. Earth and Planetary Science Letters, 474: 59–67. https://doi.org/10.1016/j.epsl.2017.06.017 |
Mitchell, A. H. G., Chung, S. L., Oo, T., et al., 2012. Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean? Journal of Asian Earth Sciences, 56: 1–23. https://doi.org/10.1016/j.jseaes.2012.04.019 |
Mitchell, A. H. G., Hlaing, T., Htay, N., 2010. The Chin Hills Segment of the Indo-Burman Ranges: Not a Simple Accretionary Wedge. Memoir Geological Society of India, 75: 3–24 |
Morley, C. K., Naing, T. T., Searle, M., et al., 2020. Structural and Tectonic Development of the Indo-Burma Ranges. Earth-Science Reviews, 200: 102992. https://doi.org/10.1016/j.earscirev.2019.102992 |
Parkinson, I. J., Hawkesworth, C. J., Cohen, A. S., 1998. Ancient Mantle in a Modern Arc: Osmium Isotopes in Izu-Bonin-Mariana Forearc Peridotites. Science, 281(5385): 2011–2013. https://doi.org/10.1126/science.281.5385.2011 |
Qi, M., Xiang, H., Zhong, Z. Q., et al., 2013. 40Ar/39Ar Geochronology Constraints on the Formation Age of Myanmar Jadeitite. Lithos, 162/163: 107–114. https://doi.org/10.1016/j.lithos.2012.12.012 |
Qi, M., Xiang, H., Zhang, Z. M., et al., 2014. Zircon U-Pb Ages of Myanmar Jadeitite and Constrain on the Fluid in Subduction Zone of Neo-Tethys. Acta Petrologica Sinica, 30(8): 2279–2286 (in Chinese with English Abstract) |
Qiu, Z. L., Wu, F. Y., Yang, S. F., et al., 2009. Age and Genesis of the Myanmar Jadeite: Constraints from U-Pb Ages and Hf Isotopes of Zircon Inclusions. Chinese Science Bulletin, 54(4): 658–668. https://doi.org/10.1007/s11434-008-0490-3 |
Rajkakati, M., Bhowmik, S. K., Ao, A., et al., 2019. Thermal History of Early Jurassic Eclogite Facies Metamorphism in the Nagaland Ophiolite Complex, NE India: New Insights into Pre-Cretaceous Sub-duction Channel Tectonics within the Neo-Tethys. Lithos, 346: 105166. https://doi.org/10.1016/j.lithos.2019.105166 |
Riel, N., Duarte, J. C., Almeida, J., et al., 2023. Subduction Initiation Triggered the Caribbean Large Igneous Province. Nature Communi-cations, 14: 786. https://doi.org/10.1038/s41467-023-36419-x |
Searle, M. P., Morley, C. K., Waters, D. J., et al., 2017. Chapter 12: Tectonic and Metamorphic Evolution of the Mogok Metamorphic and Jade Mines Belts and Ophiolitic Terranes of Burma (Myanmar). Geological Society, London, Memoirs, 48(1): 261–293. https://doi.org/10.1144/m48.12 |
Searle, M. P., Palin, R. M., Gardiner, N. J., et al., 2023. The Burmese Jade Mines Belt: Origins of Jadeitites, Serpentinites, and Ophiolitic Peridotites and Gabbros. Journal of the Geological Society, 180(4): jgs2023. https://doi.org/10.1144/jgs2023-004 |
Sevastjanova, I., Hall, R., Rittner, M., et al., 2016. Myanmar and Asia United, Australia Left behind Long Ago. Gondwana Research, 32: 24–40. https://doi.org/10.1016/j.gr.2015.02.001 |
Shi, G. H., Cui, W. Y., Cao, S. M., et al., 2008. Ion Microprobe Zircon U-Pb Age and Geochemistry of the Myanmar Jadeitite. Journal of the Geological Society, 165(1): 221–234. https://doi.org/10.1144/0016-76492006-119 |
Shi, G. H., Jiang, N., Liu, Y., et al., 2009. Zircon Hf Isotope Signature of the Depleted Mantle in the Myanmar Jadeitite: Implications for Mesozoic Intra-Oceanic Subduction between the Eastern Indian Plate and the Burmese Platelet. Lithos, 112(3): 342–350. https://doi.org/10.1016/j.lithos.2009.03.011 |
Shi, G. H., Lei, W. Y., He, H. Y., et al., 2014. Superimposed Tectono-Metamorphic Episodes of Jurassic and Eocene Age in the Jadeite Uplift, Myanmar, as Revealed by 40Ar/39Ar Dating. Gondwana Research, 26(2): 464–474. https://doi.org/10.1016/j.gr.2013.08.007 |
Singh, A. K., Chung, S. L., Bikramaditya, R. K., et al., 2017. New U-Pb Zircon Ages of Plagiogranites from the Nagaland-Manipur Ophiolites, Indo-Myanmar Orogenic Belt, NE India. Journal of the Geological Society, 174(1): 170–179. https://doi.org/10.1144/jgs2016-048 |
Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth and Planetary Science Letters, 226(3/4): 275–292. https://doi.org/10.1016/j.epsl.2004.08.007 |
Sun, B. L., Yang, J. F., Lu, G., et al., 2023. Numerical Modeling of Induced Subduction Initiation: Insights from the Oceanic Plateau Accretion. Tecto-nophysics, 868: 230108. https://doi.org/10.1016/j.tecto.2023.230108 |
Tapster, S., Roberts, N. M. W., Petterson, M. G., et al., 2014. From Continent to Intra-Oceanic Arc: Zircon Xenocrysts Record the Crustal Evolution of the Solomon Island Arc. Geology, 42(12): 1087–1090. https://doi.org/10.1130/g36033.1 |
Torsvik, T. H., 2019. Earth History: A Journey in Time and Space from Base to Top. Tectonophysics, 760: 297–313. https://doi.org/10.1016/j.tecto.2018.09.009 |
van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., et al., 2011. Acceleration and Deceleration of India-Asia Convergence since the Cretaceous: Roles of Mantle Plumes and Continental Collision. Journal of Geophysical Research (Solid Earth), 116(B6): B06101. https://doi.org/10.1029/2010jb008051 |
van Hinsbergen, D. J. J., Peters, K., Maffione, M., et al., 2015. Dynamics of Intraoceanic Subduction Initiation: 2. Suprasubduction Zone Ophiolite Formation and Metamorphic Sole Exhumation in Context of Absolute Plate Motions. Geochemistry, Geophysics, Geosystems, 16(6): 1771–1785. https://doi.org/10.1002/2015gc005745 |
van Hinsbergen, D. J. J., Steinberger, B., Guilmette, C., et al., 2021. A Record of Plume-Induced Plate Rotation Triggering Subduction Initiation. Nature Geoscience, 14: 626–630. https://doi.org/10.1038/s41561-021-00780-7 |
Wang, J. G., Wu, F. Y., Tan, X. C., et al., 2014. Magmatic Evolution of the Western Myanmar Arc Documented by U-Pb and Hf Isotopes in Detrital Zircon. Tectonophysics, 612/613: 97–105. https://doi.org/10.1016/j.tecto.2013.11.039 |
Westerweel, J., Roperch, P., Licht, A., et al., 2019. Burma Terrane Part of the Trans-Tethyan Arc during Collision with India According to Palaeomagnetic Data. Nature Geoscience, 12: 863–868. https://doi.org/10.1038/s41561-019-0443-2 |
Wu, F. Y., Wang, J. G., Liu, C. Z., et al., 2019. Intra-Oceanic Arc: Its Formation and Evolution. Acta Petrologica Sinica, 35(1): 1–15 (in Chinese with English Abstract) |
Xu, Y., Liu, C. Z., Chen, Y., et al., 2017. Petrogenesis and Tectonic Implications of Gabbro and Plagiogranite Intrusions in Mantle Peridotites of the Myitkyina Ophiolite, Myanmar. Lithos, 284: 180–193. https://doi.org/10.1016/j.lithos.2017.04.014 |
Yan, Z. Y., Chen, L., Xiong, X., et al., 2021. Oceanic Plateau and Subduction Zone Jump: Two-Dimensional Thermo-Mechanical Modeling. Journal of Geophysical Research (Solid Earth), 126(7): e2021JB021855. https://doi.org/10.1029/2021jb021855 |
Yan, Z. Y., Chen, L., Zuza, A. V., et al., 2024. Successive Accretions of Future Allochthonous Terranes and Multiple Subduction Zone Jumps: Implications for Tethyan Evolution. Geological Society of America Bulletin. https://doi.org/10.1130/b37263.1 |
Yang, G. X., 2022. Subduction Initiation Triggered by Collision: A Review Based on Examples and Models. Earth-Science Reviews, 232: 104129. https://doi.org/10.1016/j.earscirev.2022.104129 |
Yang, J. S., Xu, Z. Q., Duan, X. D., et al., 2012. Discovery of a Jurassic SSZ Ophiolite in the Myitkyina Region of Myanmar. Acta Petrologica Sinica, 28(6): 1710–1730 (in Chinese with English Abstract) |
Yang, S., Liang, X. F., Jiang, M. M., et al., 2022. Slab Remnants beneath the Myanmar Terrane Evidencing Double Subduction of the Neo-Tethyan Ocean. Science Advances, 8(34): eabo1027. https://doi.org/10.1126/sciadv.abo1027 |
Yao, W., Ding, L., Cai, F. L., et al., 2017. Origin and Tectonic Evolution of Upper Triassic Turbidites in the Indo-Burman Ranges, West Myanmar. Tectonophysics, 721: 90–105. https://doi.org/10.1016/j.tecto.2017.09.016 |
Yui, T. F., Fukoyama, M., Iizuka, Y., et al., 2013. Is Myanmar Jadeitite of Jurassic Age? A Result from Incompletely Recrystallized Inherited Zircon. Lithos, 160/161: 268–282. https://doi.org/10.1016/j.lithos.2012.12.011 |
Zahirovic, S., Seton, M., Müller, R. D., 2014. The Cretaceous and Cenozoic Tectonic Evolution of Southeast Asia. Solid Earth, 5(1): 227–273. https://doi.org/10.5194/se-5-227-2014 |
Zhang, C., Liu, C. Z., Xu, Y., et al., 2019. Subduction Re-Initiation at Dying Ridge of Neo-Tethys: Insights from Mafic and Metamafic Rocks in Lhaze Ophiolitic Mélange, Yarlung-Tsangbo Suture Zone. Earth and Planetary Science Letters, 523: 115707. https://doi.org/10.1016/j.epsl.2019.07.009 |
Zhang, J. E., Xiao, W. J., Windley, B. F., et al., 2017. Early Cretaceous Wedge Extrusion in the Indo-Burma Range Accretionary Complex: Implications for the Mesozoic Subduction of Neotethys in SE Asia. International Journal of Earth Sciences, 106(4): 1391–1408. https://doi.org/10.1007/s00531-017-1468-7 |
Zhang, J. E., Xiao, W. J., Windley, B. F., et al., 2018. Multiple Alternating Forearc- and Backarc-Ward Migration of Magmatism in the Indo-Myanmar Orogenic Belt since the Jurassic: Documentation of the Orogenic Architecture of Eastern Neotethys in SE Asia. Earth Science Reviews, 185: 704–731. https://doi.org/10.1016/j.earscirev.2018.07.009 |
Zhang, L. Y., Fan, W. M., Ding, L., et al., 2022. Forced Subduction Initiation within the Neotethys: An Example from the Mid-Cretaceous Wuntho-Popa Arc in Myanmar. GSA Bulletin, 134(3/4): 849–870. https://doi.org/10.1130/b35818.1 |
Zhang, Q. H., Chen, Y., Chen, S., et al., 2024. Intra-Neo-Tethyan Subduction Initiation Inferred from the Indawgyi Mafic Rocks in the Central Ophiolite Belt, Myanmar. Geological Society of America Bulletin. https://doi.org/10.1130/b37076.1 |
Zhong, X. Y., Li, Z. H., 2020. Subduction Initiation during Collision-Induced Subduction Transference: Numerical Modeling and Implications for the Tethyan Evolution. Journal of Geophysical Research (Solid Earth), 125(2): e2019JB019288. https://doi.org/10.1029/2019jb019288 |
Zhu, R. X., Zhao, P., Wan, B., et al., 2023. Geodynamics of the One-Way Subduction of the Neo-Tethys Ocean. Chinese Science Bulletin, 68(13): 1699–1708. https://doi.org/10.1360/tb-2022-1141 |