Adams, B. A., Whipple, K. X., Forte, A. M., et al., 2020. Climate Controls on Erosion in Tectonically Active Landscapes. Science Advances, 6(42): eaaz3166. https://doi.org/10.1126/sciadv.aaz3166 |
Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2001. Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature, 414: 738–742. https://doi.org/10.1038/414738a |
Bookhagen, B., Burbank, D. W., 2010. Toward a Complete Himalayan Hydrological Budget: Spatiotemporal Distribution of Snowmelt and Rainfall and Their Impact on River Discharge. Journal of Geophysical Research (Earth Surface), 115(F3): F03019. https://doi.org/10.1029/2009jf001426 |
Braun, J., Willett, S. D., 2013. A very Efficient O(n), Implicit and Parallel Method to Solve the Stream Power Equation Governing Fluvial Incision and Landscape Evolution. Geomorphology, 180/181: 170–179. https://doi.org/10.1016/j.geomorph.2012.10.008 |
Carrapa, B., Robert, X., DeCelles, P. G., et al., 2016. Asymmetric Exhumation of the Mount Everest Region: Implications for the Tectono-Topographic Evolution of the Himalaya. Geology, 44(8): 611–614. https://doi.org/10.1130/g37756.1 |
Clark, M. K., Royden, L. H., 2000. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 28(8): 703.https://doi.org/10.1130/0091-7613(2000)28703:tobtem>2.0.co;2 doi: 10.1130/0091-7613(2000)28703:tobtem>2.0.co;2 |
Clark, M. K., Royden, L. H., Whipple, K. X., et al., 2006. Use of a Regional, Relict Landscape to Measure Vertical Deformation of the Eastern Tibetan Plateau. Journal of Geophysical Research: Earth Surface, 111(F3). https://doi.org/10.1029/2005jf000294 |
Clift, P. D., Hodges, K. V., Heslop, D., et al., 2008. Correlation of Himalayan Exhumation Rates and Asian Monsoon Intensity. Nature Geoscience, 1: 875–880. https://doi.org/10.1038/ngeo351 |
Culling, W. E. H., 1960. Analytical Theory of Erosion. The Journal of Geology, 68(3): 336–344. https://doi.org/10.1086/626663 |
Dai, J. G., Fox, M., Han, X., et al., 2021. Two Stages of Accelerated Exhumation in the Middle Reach of the Yarlung River, Southern Tibet since the Mid-Miocene. Tectonics, 40(6): e2020TC006618. https://doi.org/10.1029/2020tc006618 |
Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research: Solid Earth, 88(B2): 1153–1172. https://doi.org/10.1029/jb088ib02p01153 |
Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652–667. https://doi.org/10.1038/s43017-022-00318-4 |
Gao, R., Lu, Z. W., Klemperer, S. L., et al., 2016. Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya. Nature Geoscience, 9: 555–560. https://doi.org/10.1038/ngeo2730 |
Grandin, R., Doin, M. P., Bollinger, L., et al., 2012. Long-Term Growth of the Himalaya Inferred from Interseismic InSAR Measurement. Geology, 40(12): 1059–1062. https://doi.org/10.1130/g33154.1 |
Guerit, L., Yuan, X. P., Carretier, S., et al., 2019. Fluvial Landscape Evolution Controlled by the Sediment Deposition Coefficient: Estimation from Experimental and Natural Landscapes. Geology, 47(9): 853–856. https://doi.org/10.1130/g46356.1 |
Hergarten, S., Robl, J., 2022. The Linear Feedback Precipitation Model (LFPM 1.0)—A Simple and Efficient Model for Orographic Precipitation in the Context of Landform Evolution Modeling. Geoscientific Model Development, 15(5): 2063–2084. https://doi.org/10.5194/gmd-15-2063-2022 |
Hu, Y. Y., Li, X., Boos, W. R., et al., 2023. Emergence of the Modern Global Monsoon from the Pangaea Megamonsoon Set by Palaeogeo-graphy. Nature Geoscience, 16: 1041–1046. https://doi.org/10.1038/s41561-023-01288-y |
Husson, L., Bernet, M., Guillot, S., et al., 2014. Dynamic ups and downs of the Himalaya. Geology, 42(10): 839–842. https://doi.org/10.1130/g36049.1 |
Ibarra, D. E., Dai, J. G., Gao, Y., et al., 2023. High-Elevation Tibetan Plateau before India-Eurasia Collision Recorded by Triple Oxygen Isotopes. Nature Geoscience, 16(9): 810–815. https://doi.org/10.1038/s41561-023-01243-x |
Lavé, J., Avouac, J. P., 2001. Fluvial Incision and Tectonic Uplift across the Himalayas of Central Nepal. Journal of Geophysical Research: Solid Earth, 106(B11): 26561–26591. https://doi.org/10.1029/2001jb000359 |
Li, Y. L., Wang, C. S., Dai, J. G., et al., 2015. Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen: A Review. Earth-Science Reviews, 143: 36–61. https://doi.org/10.1016/j.earscirev.2015.01.001 |
Liang, S. M., Gan, W. J., Shen, C. Z., et al., 2013. Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements. Journal of Geophysical Research: Solid Earth, 118(10): 5722–5732. https://doi.org/10.1002/2013jb010503 |
Molnar, P., Stock, J. M., 2009. Slowing of India's Convergence with Eurasia since 20 Ma and Its Implications for Tibetan Mantle Dynamics. Tectonics, 28(3). https://doi.org/10.1029/2008tc002271 |
Richardson, P. W., Perron, J. T., Schurr, N. D., 2019. Influences of Climate and Life on Hillslope Sediment Transport. Geology, 47(5): 423–426. https://doi.org/10.1130/g45305.1 |
Sarr, A. C., Donnadieu, Y., Bolton, C. T., et al., 2022. Neogene South Asian Monsoon Rainfall and Wind Histories Diverged due to Topographic Effects. Nature Geoscience, 15: 314–319. https://doi.org/10.1038/s41561-022-00919-0 |
Smith, R. B., Barstad, I., 2004. A Linear Theory of Orographic Precipitation. Journal of the Atmospheric Sciences, 61(12): 1377–1391.https://doi.org/10.1175/1520-0469(2004)0611377:altoop>2.0.co;2 doi: 10.1175/1520-0469(2004)0611377:altoop>2.0.co;2 |
van Hinsbergen, D. J. J., Lippert, P. C., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America, 109(20): 7659–7664. https://doi.org/10.1073/pnas.1117262109 |
Whipple, K. X., 2009. The Influence of Climate on the Tectonic Evolution of Mountain Belts. Nature Geoscience, 2: 97–104. https://doi.org/10.1038/ngeo413 |
Whipple, K. X., Kirby, E., Brocklehurst, S. H., 1999. Geomorphic Limits to Climate-Induced Increases in Topographic Relief. Nature, 401: 39–43. https://doi.org/10.1038/43375 |
Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661–17674. https://doi.org/10.1029/1999jb900120 |
Wu, F. L., Fang, X. M., Yang, Y. B., et al., 2022. Reorganization of Asian Climate in Relation to Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 684–700. https://doi.org/10.1038/s43017-022-00331-7 |
Yuan, X. P., Braun, J., Guerit, L., et al., 2019. A New Efficient Method to Solve the Stream Power Law Model Taking into Account Sediment Deposition. Journal of Geophysical Research: Earth Surface, 124(6): 1346–1365. https://doi.org/10.1029/2018jf004867 |
Yuan, X. P., Huppert, K. L., Braun, J., et al., 2022. Propagating Uplift Controls on High-Elevation, Low-Relief Landscape Formation in the Southeast Tibetan Plateau. Geology, 50(1): 60–65. https://doi.org/10.1130/g49022.1 |