Apen, F. E., Wall, C. J., Cottle, J. M., et al., 2022. Apatites for Destruction: Reference Apatites from Morocco and Brazil for U-Pb Petrochro-nology and Nd and Sr Isotope Geochemistry. Chemical Geology, 590: 120689. https://doi.org/10.1016/j.chemgeo.2021.120689 |
Barfod, G. H., Krogstad, E. J., Frei, R., et al., 2005. Lu-Hf and PbSL Geochronology of Apatites from Proterozoic Terranes: A First Look at Lu-Hf Isotopic Closure in Metamorphic Apatite. Geochimica et Cosmochimica Acta, 69(7): 1847–1859. https://doi.org/10.1016/j.gca. 2004.09.014 doi: 10.1016/j.gca.2004.09.014 |
Bergman, S. C., 1987. Lamproites and Other Potassium-Rich Igneous Rocks: A Review of Their Occurrence, Mineralogy and Geochemistry. Geological Society of London Special Publications, 30(1): 103–190. https://doi.org/10.1144/gsl.sp.1987.030.01.08 |
Chew, D. M., Spikings, R. A., 2015. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3): 189–194. https://doi.org/10.2113/gselements.11.3.189 |
Chew, D. M., Sylvester, P. J., Tubrett, M. N., 2011. U-Pb and Th-Pb Dating of Apatite by LA-ICPMS. Chemical Geology, 280(1/2): 200–216. https://doi.org/10.1016/j.chemgeo.2010.11.010 |
Ding, R. X., 2023. Low Temperature Thermal History Reconstruction Based on Apatite Fission-Track Length Distribution and Apatite U-Th/He Age Using Low-T Thermo. Journal of Earth Science, 34(3): 717–725. https://doi.org/10.1007/s12583-020-1071-x |
Fang, W., Hu, R., Su, W., et al., 2002. Emplacement Ages of Lamproites in Zhenyuan Area, Guizhou Providence, China. Chinese Science Bulletin, 47(10): 307–312 (in Chinese) |
Feng, Y. Z., Lu, W. J., Xiao, B., et al., 2023. Apatite Geochronology and Geochemistry of Gucheng Granites: Implications for Petrogenesis and REE Metallogenesis in South China. Ore Geology Reviews, 163: 105791. https://doi.org/10.1016/j.oregeorev.2023.105791 |
Gardiner, N. J., Kirkland, C. L., Hollis, J. A., et al., 2020. North Atlantic Craton Architecture Revealed by Kimberlite-Hosted Crustal Zircons. Earth and Planetary Science Letters, 534: 116091. https://doi.org/10.1016/j.epsl.2020.116091 |
Gervasoni, F., Klemme, S., Rocha-Júnior, E. R. V., et al., 2016. Zircon Saturation in Silicate Melts: A New and Improved Model for Aluminous and Alkaline Melts. Contributions to Mineralogy and Petrology, 171(3): 21. https://doi.org/10.1007/s00410-016-1227-y |
Giuliani, A., Phillips, D., Pearson, D. G., et al., 2023. Diamond Preservation in the Lithospheric Mantle Recorded by Olivine in Kimberlites. Nature Communications, 14: 6999. https://doi.org/10.1038/s41467-023-42888-x |
Heaman, L. M., Phillips, D., Pearson, G., 2019. Dating Kimberlites: Methods and Emplacement Patterns through Time. Elements, 15(6): 399–404. https://doi.org/10.2138/gselements.15.6.399 |
Li, L. L., Shi, Y. R., Anderson, J. L., et al., 2021. Dating Mafic Magmatism by Integrating Baddeleyite, Zircon and Apatite U-Pb Geochronology: A Case Study of Proterozoic Mafic Dykes/Sills in the North China Craton. Lithos, 380/381: 105820.https://doi.org/10.1016/j.lithos. 2020.105820 doi: 10.1016/j.lithos.2020.105820 |
Li, Q. L., Li, X. H., Wu, F. Y., et al., 2016. Accessary Minerals SIMS U-Th-Pb Dating for Kimberlite and Lamproite. Acta Geologica Sinica—English Edition, 90(Suppl. 1): 74–75. https://doi.org/10.1111/1755-6724.12896 |
Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647–4654. https://doi.org/10.1007/s11434-013-5932-x |
Melnik, A. E., Li, Q. L., Korolev, N. M., et al., 2022. Desilicification Rims of Zircon Xenocrysts Record the Timing of Kimberlite Emplacement. Journal of Geophysical Research (Solid Earth), 127(9): e2022JB024482. https://doi.org/10.1029/2022jb024482 |
Mitchell, R. H., Giuliani, A., O'Brien, H., 2019. What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites. Elements, 15(6): 381–386. https://doi.org/10.2138/gselements.15.6.381 |
Renne, P. R., Swisher, C. C., Deino, A. L., et al., 1998. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chemical Geology, 145(1/2): 117–152. https://doi.org/10.1016/s0009-2541(97)00159-9 |
Russell, J. K., Sparks, R. S. J., Kavanagh, J. L., 2019. Kimberlite Volcanology: Transport, Ascent, and Eruption. Elements, 15(6): 405–410. https://doi.org/10.2138/gselements.15.6.405 |
Schoene, B., Bowring, S. A., 2006. U-Pb Systematics of the McClure Mountain Syenite: Thermochronological Constraints on the Age of the 40Ar/39Ar Standard MMHB. Contributions to Mineralogy and Petrology, 151(5): 615–630. https://doi.org/10.1007/s00410-006-0077-4 |
Stanley, J. R., Flowers, R. M., 2016. Dating Kimberlite Emplacement with Zircon and Perovskite (U-Th)/He Geochronology. Geochemistry, Geophysics, Geosystems, 17(11): 4517–4533. https://doi.org/10.1002/2016gc006519 |
Tappe, S., Smart, K., Torsvik, T., et al., 2018. Geodynamics of Kimberlites on a Cooling Earth: Clues to Plate Tectonic Evolution and Deep Volatile Cycles. Earth and Planetary Science Letters, 484: 1–14. https://doi.org/10.1016/j.epsl.2017.12.013 |
Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low-Damage Apatite U-Pb Dating Using Laser Ablation-Multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): Q0AA21. https://doi.org/10.1029/2011gc003928 |
Woodhead, J., Hergt, J., Giuliani, A., et al., 2019. Kimberlites Reveal 2.5-Billion-Year Evolution of a Deep, Isolated Mantle Reservoir. Nature, 573: 578–581. https://doi.org/10.1038/s41586-019-1574-8 |
Zhang, J. W., Santosh, M., Zhu, Y. H., et al., 2023. Constraining the Timing of Deep Magmatic Pulses from Diamondiferous Kimberlite and Related Rocks in the South China Continent and Implications for Diamond Exploration. Ore Geology Reviews, 154: 105328. https://doi.org/10.1016/j.oregeorev.2023.105328 |
Zi, J. W., Rasmussen, B., Muhling, J. R., et al., 2022. In situ U-Pb and Geochemical Evidence for Ancient Pb-Loss during Hydrothermal Alteration Producing Apparent Young Concordant Zircon Dates in Older Tuffs. Geochimica et Cosmochimica Acta, 320: 324–338. https://doi.org/10.1016/j.gca.2021.11.038 |