Cox, G. M., Halverson, G. P., Stevenson, R. K., et al., 2016. Continental Flood Basalt Weathering as a Trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446: 89–99. https://doi.org/10.1016/j.epsl.2016.04.016 |
Gong, Z., Li, M. S., 2020. Astrochronology of the Ediacaran Shuram Carbon Isotope Excursion, Oman. Earth and Planetary Science Letters, 547: 116462. https://doi.org/10.1016/j.epsl.2020.116462 |
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983 |
Kirschvink, J. L., 2023. A Movable Beast: Glaciation in the Ediacaran. National Science Review, 10(8): nwad153. https://doi.org/10.1093/nsr/nwad153 |
Kirschvink, J. L., Ripperdan, R. L., Evans, D. A., 1997. Evidence for a Large-Scale Reorganization of Early Cambrian Continental Masses by Inertial Interchange True Polar Wander. Science, 277(5325): 541–545. https://doi.org/10.1126/science.277.5325.541 |
Lan, Z. W., Huyskens, M. H., Ren, R., et al., 2024. A potentially New Early Ediacaran Glaciation. Journal of Earth Science. https://doi.org/10.1007/s12583-024-1979-7 |
Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219–232. https://doi.org/10.1016/j.sedgeo.2013.05.016 |
Niu, Y. Z., Shi, G. R., Zhang, Q., et al., 2024. Ediacaran Cordilleran-Type Mountain Ice Sheets and Their Erosion Effects. Earth-Science Reviews, 249: 104671. https://doi.org/10.1016/j.earscirev.2023.104671 |
Pu, J. P., Bowring, S. A., Ramezani, J., et al., 2016. Dodging Snowballs: Geochronology of the Gaskiers Glaciation and the First Appearance of the Ediacaran Biota. Geology, 44(11): 955–958. https://doi.org/10.1130/g38284.1 |
Raub, T. D., Kirschvink, J. L., Evans, D. A. D., 2007. True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses. Treatise on Geophysics. Elsevier, Amsterdam. 565–589. https://doi.org/10.1016/b978-044452748-6.00099-7 |
Retallack, G. J., 2022. Towards a Glacial Subdivision of the Ediacaran Period, with an Example of the Boston Bay Group, Massachusetts. Australian Journal of Earth Sciences, 69(2): 223–250. https://doi.org/10.1080/08120099.2021.1954088 |
Robert, B., Besse, J., Blein, O., et al., 2017. Constraints on the Ediacaran Inertial Interchange True Polar Wander Hypothesis: A New Paleomag-netic Study in Morocco (West African Craton). Precambrian Research, 295: 90–116. https://doi.org/10.1016/j.precamres.2017.04.010 |
Robert, B., Greff-Lefftz, M., Besse, J., 2018. True Polar Wander: A Key Indicator for Plate Configuration and Mantle Convection during the Late Neoproterozoic. Geochemistry, Geophysics, Geosystems, 19(9): 3478–3495. https://doi.org/10.1029/2018gc007490 |
Rooney, A. D., Cantine, M. D., Bergmann, K. D., et al., 2020. Calibrating the Coevolution of Ediacaran Life and Environment. Proceedings of the National Academy of Sciences of the United States of America, 117(29): 16824–16830. https://doi.org/10.1073/pnas.2002918117 |
Wang, R. M., Shen, B., Lang, X. G., et al., 2023a. A Great Late Ediacaran Ice Age. National Science Review, 10(8): nwad117. https://doi.org/10.1093/nsr/nwad117 |
Wang, R. M., Xing, C. C., Wen, B., et al., 2023b. The Origin of Cap Carbonate after the Ediacaran Glaciations. Global and Planetary Change, 226: 104141. https://doi.org/10.1016/j.gloplacha.2023.104141 |
Wang, R. M., Yin, Z. J., Shen, B., 2023c. A Late Ediacaran Ice Age: The Key Node in the Earth System Evolution. Earth-Science Reviews, 247: 104610. https://doi.org/10.1016/j.earscirev.2023.104610 |
Wen, B., Evans, D. A. D., Anderson, R. P., et al., 2020. Late Ediacaran Paleogeography of Avalonia and the Cambrian Assembly of West Gondwana. Earth and Planetary Science Letters, 552: 116591. https://doi.org/10.1016/j.epsl.2020.116591 |
Wen, B., Luo, C. R., Li, Y. X., et al., 2022. Late Ediacaran Inertial-Interchange True Polar Wander (IITPW) Event: A New Road to Reconcile the Enigmatic Paleogeography Prior to the Final Assembly of Gondwana. Turkish Journal of Earth Sciences, 31: 425–437. https://doi.org/10.55730/1300-0985.1811 |
Xiao, S. H., Narbonne, G. M., 2020. The Ediacaran Period. Geologic Time Scale 2020. Elsevier, Amsterdam. 521–561. https://doi.org/10.1016/b978-0-12-824360-2.00018-8 |
Xu, Y. G., Huang, X. L., Wang, Q., et al., 2024. Earth's Habitability Driven by Deep Processes. Chinese Science Bulletin, 69(2): 169–183. https://doi.org/10.1360/tb-2023-0816 (in Chinese) |
Zhang, Z. F., Liang, Y., Liu, F., et al., 2023. New Perspectives on Cambrian Explosion: Construction of the First Animal Consumer-Driven Marine Ecosystem on Earth. Acta Palaeontologica Sinica, 62(4): 463–515 (in Chinese with English Abstract) |