Bardgett, R. D., Freeman, C., Ostle, N. J., 2008. Microbial Contributions to Climate Change through Carbon Cycle Feedbacks. The ISME Journal, 2(8): 805–814. https://doi.org/10.1038/ismej.2008.58 |
Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost is Warming at a Global Scale. Nature Communications, 10: 264. https://doi.org/10.1038/s41467-018-08240-4 |
Calleja, M. L., Al-Otaibi, N., Morán, X. A. G., 2019. Dissolved Organic Carbon Contribution to Oxygen Respiration in the Central Red Sea. Scientific Reports, 9: 4690. https://doi.org/10.1038/s41598-019-40753-w |
Chang, J., Zhang, F. Y., Wang, G. X., et al., 2024. Spatiotemporal Heterogeneity of Suprapermafrost Groundwater Dynamic Processes in the Permafrost Region of the Qinghai-Tibet Plateau. CATENA, 239: 107911. https://doi.org/10.1016/j.catena.2024.107911 |
Chen, Y. T., Cheng, X., Liu, A. B., et al., 2023. Tracking Lake Drainage Events and Drained Lake Basin Vegetation Dynamics across the Arctic. Nature Communications, 14: 7359. https://doi.org/10.1038/s41467-023-43207-0 |
Connolly, C. T., Cardenas, M. B., Burkart, G. A., et al., 2020. Groundwater as a Major Source of Dissolved Organic Matter to Arctic Coastal Waters. Nature Communications, 11: 1479. https://doi.org/10.1038/s41467-020-15250-8 |
Fedorov, A. N., Gavriliev, P. P., Konstantinov, P. Y., et al., 2014. Estimating the Water Balance of a Thermokarst Lake in the Middle of the Lena River Basin, Eastern Siberia. Ecohydrology, 7(2): 188–196. https://doi.org/10.1002/eco.1378 |
Gao, Z. Y., Niu, F. J., Wang, Y. B., et al., 2021. Suprapermafrost Groundwater Flow and Exchange around a Thermokarst Lake on the Qinghai-Tibet Plateau, China. Journal of Hydrology, 593: 125882. https://doi.org/10.1016/j.jhydrol.2020.125882 |
Guo, W., Ji, X. Y., Yu, Z. F., et al., 2024. Research Progress and Challenges on Persistent Organic Pollutants in Lakes. Journal of Earth Science, 35(2): 729–736. https://doi.org/10.1007/s12583-024-1978-8 |
Hu, G. J., Zhao, L., Wu, T. H., et al., 2021. Spatiotemporal Variations and Regional Differences in Air Temperature in the Permafrost Regions in the Northern Hemisphere during 1980–2018. Science of the Total Environ-ment, 791: 148358. https://doi.org/10.1016/j.scitotenv.2021.148358 |
Hu, J., Kang, L. Y., Li, Z. L., et al., 2023. Photo-Produced Aromatic Compounds Stimulate Microbial Degradation of Dissolved Organic Carbon in Thermokarst Lakes. Nature Communications, 14: 3681. https://doi.org/10.1038/s41467-023-39432-2 |
Hu, Y. L., Ma, R., Sun, Z. Y., et al., 2023. Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai-Tibet Plateau. Water Resources Research, 59(2): e2022WR032426. https://doi.org/10.1029/2022wr032426 |
in't Zandt, M. H., Liebner, S., Welte, C. U., 2020. Roles of Thermokarst Lakes in a Warming World. Trends in Microbiology, 28(9): 769–779. https://doi.org/10.1016/j.tim.2020.04.002 |
IPCC, 2021. Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte, V. m Zhai, P., Pirani, A., et al., eds., Contribution of Working Group I to the Sixth Assessment Report of the Inter-governmental Panel on Climate Change. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781009157896 |
Jiao, N. Z., Luo, T. W., Chen, Q. R., et al., 2024. The Microbial Carbon Pump and Climate Change. Nature Reviews Microbiology, 22: 408–419. https://doi.org/10.1038/s41579-024-01018-0 |
Jin, H. J., Huang, Y. D., Bense, V. F., et al., 2022. Permafrost Degradation and Its Hydrogeological Impacts. Water, 14(3): 372. https://doi.org/10.3390/w14030372 |
Li, Z. J., Li, Z. X., Fan, X. J., et al., 2020. The Sources of Supra-Permafrost Water and Its Hydrological Effect Based on Stable Isotopes in the Third Pole Region. Science of the Total Environment, 715: 136911. https://doi.org/10.1016/j.scitotenv.2020.136911 |
Li, Y., Wang, G. X., Sun, S. Q., et al., 2024. Methane Emissions from the Qinghai-Tibet Plateau Ponds and Lakes: Roles of Ice Thaw and Vegetation Zone. Global Biogeochemical Cycles, 38(4): e2024GB008106. https://doi.org/10.1029/2024gb008106 |
Liu, G. M., Zhang, B., Wang, L., et al., 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689–4698. https://doi.org/10.3799/dqkx.2022.083 (in Chinese with English Abstract) |
Liu, S. Q., Wang, P., Huang, Q. W., et al., 2022. Seasonal and Spatial Variations in Riverine DOC Exports in Permafrost-Dominated Arctic River Basins. Journal of Hydrology, 612: 128060. https://doi.org/10.1016/j.jhydrol.2022.128060 |
Luo, J., Niu, F. J., Lin, Z. J., et al., 2022. Abrupt Increase in Thermokarst Lakes on the Central Tibetan Plateau over the last 50years. CATENA, 217: 106497. https://doi.org/10.1016/j.catena.2022.106497 |
Ma, Q., Jin, H. J., Yu, C. R., et al., 2019. Dissolved Organic Carbon in Permafrost Regions: A Review. Science China Earth Sciences, 62(2): 349–364. https://doi.org/10.1007/s11430-018-9309-6 |
Ma, R., Sun, Z. Y., Hu, Y. L., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau: Roles of Supraper-mafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803–4823. https://doi.org/10.5194/hess-21-4803-2017 |
Matveev, A., Laurion, I., Vincent, W. F., 2018. Methane and Carbon Dioxide Emissions from Thermokarst Lakes on Mineral Soils. Arctic Science, 4(4): 584–604. https://doi.org/10.1139/as-2017-0047 |
Mu, C. C., Mu, M., Wu, X. D., et al., 2023. High Carbon Emissions from Thermokarst Lakes and Their Determinants in the Tibet Plateau. Global Change Biology, 29(10): 2732–2745. https://doi.org/10.1111/gcb.16658 |
O'Donnell, J. A., Aiken, G. R., Walvoord, M. A., et al., 2012. Dissolved Organic Matter Composition of Winter Flow in the Yukon River Basin: Implications of Permafrost Thaw and Increased Groundwater Discharge. Global Biogeochemical Cycles, 26(4): GB0E06. https://doi.org/10.1029/2012gb004341 |
Olefeldt, D., Goswami, S., Grosse, G., et al., 2016. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nature Communications, 7: 13043. https://doi.org/10.1038/ncomms13043 |
Olid, C., Rodellas, V., Rocher-Ros, G., et al., 2022. Groundwater Discharge as a Driver of Methane Emissions from Arctic Lakes. Nature Com-munications, 13: 3667. https://doi.org/10.1038/s41467-022-31219-1 |
Pan, X. C., Yu, Q. H., You, Y. H., et al., 2017. Contribution of Supra-Permafrost Discharge to Thermokarst Lake Water Balances on the Northeastern Qinghai-Tibet Plateau. Journal of Hydrology, 555: 621–630. https://doi.org/10.1016/j.jhydrol.2017.10.046 |
Sáez-Sandino, T., García-Palacios, P., Maestre, F. T., et al., 2023. The Soil Microbiome Governs the Response of Microbial Respiration to Warming across the Globe. Nature Climate Change, 13: 1382–1387. https://doi.org/10.1038/s41558-023-01868-1 |
Schädel, C., Bader, M. K. F., Schuur, E. A. G., et al., 2016. Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils. Nature Climate Change, 6: 950–953. https://doi.org/10.1038/nclimate3054 |
Schaefer, K., Lantuit, H., Romanovsky, V. E., et al., 2014. The Impact of the Permafrost Carbon Feedback on Global Climate. Environmental Research Letters, 9(8): 085003. https://doi.org/10.1088/1748-9326/9/8/085003 |
Serikova, S., Pokrovsky, O. S., Laudon, H., et al., 2019. High Carbon Emissions from Thermokarst Lakes of Western Siberia. Nature Communications, 10: 1552. https://doi.org/10.1038/s41467-019-09592-1 |
Speetjens, N. J., Berghuijs, W. R., Wagner, J., et al., 2024. Degradation of Ice-Wedge Polygons Leads to Increased Fluxes of Water and DOC. Science of the Total Environment, 920: 170931. https://doi.org/10.1016/j.scitotenv.2024.170931 |
van Huissteden, J., Berrittella, C., Parmentier, F. J. W., et al., 2011. Methane Emissions from Permafrost Thaw Lakes Limited by Lake Drainage. Nature Climate Change, 1: 119–123. https://doi.org/10.1038/nclimate1101 |
Walter Anthony, K., Daanen, R., Anthony, P., et al., 2016. Methane Emissions Proportional to Permafrost Carbon Thawed in Arctic Lakes since the 1950s. Nature Geoscience, 9: 679–682. https://doi.org/10.1038/ngeo2795 |
Walter Anthony, K., Schneider von Deimling, T., Nitze, I., et al., 2018. 21st-Century Modeled Permafrost Carbon Emissions Accelerated by Abrupt Thaw beneath Lakes. Nature Communications, 9: 3262. https://doi.org/10.1038/s41467-018-05738-9 |
Walvoord, M. A., Kurylyk, B. L., 2016. Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone Journal, 15(6): 1–20. https://doi.org/10.2136/vzj2016.01.0010 |
Webb, E. E., Liljedahl, A. K., 2023. Diminishing Lake Area across the Northern Permafrost Zone. Nature Geoscience, 16: 202–209. https://doi.org/10.1038/s41561-023-01128-z |
Wei, Z. Q., Du, Z. H., Wang, L., et al., 2021. Sentinel-Based Inventory of Thermokarst Lakes and Ponds across Permafrost Landscapes on the Qinghai-Tibet Plateau. Earth and Space Science, 8(11): e2021EA001950. https://doi.org/10.1029/2021ea001950 |
Woo, M., 2012. Permafrost Hydrology. Springer-Verlag Berlin Heidelberg |
Yang, G. B., Zheng, Z. H., Abbott, B. W., et al., 2023. Characteristics of Methane Emissions from Alpine Thermokarst Lakes on the Tibetan Plateau. Nature Communications, 14: 3121. https://doi.org/10.1038/s41467-023-38907-6 |
You, Y. H., Yu, Q. H., Pan, X. C., et al., 2017. Thermal Effects of Lateral Supra-Permafrost Water Flow around a Thermokarst Lake on the Qinghai-Tibet Plateau. Hydrological Processes, 31(13): 2429–2437. https://doi.org/10.1002/hyp.11193 |
Zhao, L., Sun, Z., Ma, R., et al., 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177–1188. https://doi.org/10.3799/dqkx.2022.204 (in Chinese with English Abstract) |
Zhao, Y. D., Hu, X., 2023. The Diversity and Function of Microbial Community in the Sediment and Terrestrial Area of Thermokarst Lakes. CATENA, 233: 107505. https://doi.org/10.1016/j.catena.2023.107505 |
Zhu, X. Y., Campanaro, S., Treu, L., et al., 2020. Metabolic Dependencies Govern Microbial Syntrophies during Methanogenesis in an Anaerobic Digestion Ecosystem. Microbiome, 8(1): 22. https://doi.org/10.1186/s40168-019-0780-9 |