Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Zeyong Gao, Fujun Niu, Dongliang Luo, Yibo Wang, Jing Luo, Guoan Yin, Yunhu Shang. Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes. Journal of Earth Science, 2024, 35(6): 2175-2179. doi: 10.1007/s12583-024-2017-5
Citation: Zeyong Gao, Fujun Niu, Dongliang Luo, Yibo Wang, Jing Luo, Guoan Yin, Yunhu Shang. Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes. Journal of Earth Science, 2024, 35(6): 2175-2179. doi: 10.1007/s12583-024-2017-5

Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes

doi: 10.1007/s12583-024-2017-5
More Information
  • Corresponding author: Fujun Niu, niufj@shnu.edu.cn
  • Received Date: 10 May 2024
  • Accepted Date: 20 Jun 2024
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bardgett, R. D., Freeman, C., Ostle, N. J., 2008. Microbial Contributions to Climate Change through Carbon Cycle Feedbacks. The ISME Journal, 2(8): 805–814. https://doi.org/10.1038/ismej.2008.58
    Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost is Warming at a Global Scale. Nature Communications, 10: 264. https://doi.org/10.1038/s41467-018-08240-4
    Calleja, M. L., Al-Otaibi, N., Morán, X. A. G., 2019. Dissolved Organic Carbon Contribution to Oxygen Respiration in the Central Red Sea. Scientific Reports, 9: 4690. https://doi.org/10.1038/s41598-019-40753-w
    Chang, J., Zhang, F. Y., Wang, G. X., et al., 2024. Spatiotemporal Heterogeneity of Suprapermafrost Groundwater Dynamic Processes in the Permafrost Region of the Qinghai-Tibet Plateau. CATENA, 239: 107911. https://doi.org/10.1016/j.catena.2024.107911
    Chen, Y. T., Cheng, X., Liu, A. B., et al., 2023. Tracking Lake Drainage Events and Drained Lake Basin Vegetation Dynamics across the Arctic. Nature Communications, 14: 7359. https://doi.org/10.1038/s41467-023-43207-0
    Connolly, C. T., Cardenas, M. B., Burkart, G. A., et al., 2020. Groundwater as a Major Source of Dissolved Organic Matter to Arctic Coastal Waters. Nature Communications, 11: 1479. https://doi.org/10.1038/s41467-020-15250-8
    Fedorov, A. N., Gavriliev, P. P., Konstantinov, P. Y., et al., 2014. Estimating the Water Balance of a Thermokarst Lake in the Middle of the Lena River Basin, Eastern Siberia. Ecohydrology, 7(2): 188–196. https://doi.org/10.1002/eco.1378
    Gao, Z. Y., Niu, F. J., Wang, Y. B., et al., 2021. Suprapermafrost Groundwater Flow and Exchange around a Thermokarst Lake on the Qinghai-Tibet Plateau, China. Journal of Hydrology, 593: 125882. https://doi.org/10.1016/j.jhydrol.2020.125882
    Guo, W., Ji, X. Y., Yu, Z. F., et al., 2024. Research Progress and Challenges on Persistent Organic Pollutants in Lakes. Journal of Earth Science, 35(2): 729–736. https://doi.org/10.1007/s12583-024-1978-8
    Hu, G. J., Zhao, L., Wu, T. H., et al., 2021. Spatiotemporal Variations and Regional Differences in Air Temperature in the Permafrost Regions in the Northern Hemisphere during 1980–2018. Science of the Total Environ-ment, 791: 148358. https://doi.org/10.1016/j.scitotenv.2021.148358
    Hu, J., Kang, L. Y., Li, Z. L., et al., 2023. Photo-Produced Aromatic Compounds Stimulate Microbial Degradation of Dissolved Organic Carbon in Thermokarst Lakes. Nature Communications, 14: 3681. https://doi.org/10.1038/s41467-023-39432-2
    Hu, Y. L., Ma, R., Sun, Z. Y., et al., 2023. Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai-Tibet Plateau. Water Resources Research, 59(2): e2022WR032426. https://doi.org/10.1029/2022wr032426
    in't Zandt, M. H., Liebner, S., Welte, C. U., 2020. Roles of Thermokarst Lakes in a Warming World. Trends in Microbiology, 28(9): 769–779. https://doi.org/10.1016/j.tim.2020.04.002
    IPCC, 2021. Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte, V. m Zhai, P., Pirani, A., et al., eds., Contribution of Working Group I to the Sixth Assessment Report of the Inter-governmental Panel on Climate Change. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781009157896
    Jiao, N. Z., Luo, T. W., Chen, Q. R., et al., 2024. The Microbial Carbon Pump and Climate Change. Nature Reviews Microbiology, 22: 408–419. https://doi.org/10.1038/s41579-024-01018-0
    Jin, H. J., Huang, Y. D., Bense, V. F., et al., 2022. Permafrost Degradation and Its Hydrogeological Impacts. Water, 14(3): 372. https://doi.org/10.3390/w14030372
    Li, Z. J., Li, Z. X., Fan, X. J., et al., 2020. The Sources of Supra-Permafrost Water and Its Hydrological Effect Based on Stable Isotopes in the Third Pole Region. Science of the Total Environment, 715: 136911. https://doi.org/10.1016/j.scitotenv.2020.136911
    Li, Y., Wang, G. X., Sun, S. Q., et al., 2024. Methane Emissions from the Qinghai-Tibet Plateau Ponds and Lakes: Roles of Ice Thaw and Vegetation Zone. Global Biogeochemical Cycles, 38(4): e2024GB008106. https://doi.org/10.1029/2024gb008106
    Liu, G. M., Zhang, B., Wang, L., et al., 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689–4698. https://doi.org/10.3799/dqkx.2022.083 (in Chinese with English Abstract)
    Liu, S. Q., Wang, P., Huang, Q. W., et al., 2022. Seasonal and Spatial Variations in Riverine DOC Exports in Permafrost-Dominated Arctic River Basins. Journal of Hydrology, 612: 128060. https://doi.org/10.1016/j.jhydrol.2022.128060
    Luo, J., Niu, F. J., Lin, Z. J., et al., 2022. Abrupt Increase in Thermokarst Lakes on the Central Tibetan Plateau over the last 50years. CATENA, 217: 106497. https://doi.org/10.1016/j.catena.2022.106497
    Ma, Q., Jin, H. J., Yu, C. R., et al., 2019. Dissolved Organic Carbon in Permafrost Regions: A Review. Science China Earth Sciences, 62(2): 349–364. https://doi.org/10.1007/s11430-018-9309-6
    Ma, R., Sun, Z. Y., Hu, Y. L., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau: Roles of Supraper-mafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803–4823. https://doi.org/10.5194/hess-21-4803-2017
    Matveev, A., Laurion, I., Vincent, W. F., 2018. Methane and Carbon Dioxide Emissions from Thermokarst Lakes on Mineral Soils. Arctic Science, 4(4): 584–604. https://doi.org/10.1139/as-2017-0047
    Mu, C. C., Mu, M., Wu, X. D., et al., 2023. High Carbon Emissions from Thermokarst Lakes and Their Determinants in the Tibet Plateau. Global Change Biology, 29(10): 2732–2745. https://doi.org/10.1111/gcb.16658
    O'Donnell, J. A., Aiken, G. R., Walvoord, M. A., et al., 2012. Dissolved Organic Matter Composition of Winter Flow in the Yukon River Basin: Implications of Permafrost Thaw and Increased Groundwater Discharge. Global Biogeochemical Cycles, 26(4): GB0E06. https://doi.org/10.1029/2012gb004341
    Olefeldt, D., Goswami, S., Grosse, G., et al., 2016. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nature Communications, 7: 13043. https://doi.org/10.1038/ncomms13043
    Olid, C., Rodellas, V., Rocher-Ros, G., et al., 2022. Groundwater Discharge as a Driver of Methane Emissions from Arctic Lakes. Nature Com-munications, 13: 3667. https://doi.org/10.1038/s41467-022-31219-1
    Pan, X. C., Yu, Q. H., You, Y. H., et al., 2017. Contribution of Supra-Permafrost Discharge to Thermokarst Lake Water Balances on the Northeastern Qinghai-Tibet Plateau. Journal of Hydrology, 555: 621–630. https://doi.org/10.1016/j.jhydrol.2017.10.046
    Sáez-Sandino, T., García-Palacios, P., Maestre, F. T., et al., 2023. The Soil Microbiome Governs the Response of Microbial Respiration to Warming across the Globe. Nature Climate Change, 13: 1382–1387. https://doi.org/10.1038/s41558-023-01868-1
    Schädel, C., Bader, M. K. F., Schuur, E. A. G., et al., 2016. Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils. Nature Climate Change, 6: 950–953. https://doi.org/10.1038/nclimate3054
    Schaefer, K., Lantuit, H., Romanovsky, V. E., et al., 2014. The Impact of the Permafrost Carbon Feedback on Global Climate. Environmental Research Letters, 9(8): 085003. https://doi.org/10.1088/1748-9326/9/8/085003
    Serikova, S., Pokrovsky, O. S., Laudon, H., et al., 2019. High Carbon Emissions from Thermokarst Lakes of Western Siberia. Nature Communications, 10: 1552. https://doi.org/10.1038/s41467-019-09592-1
    Speetjens, N. J., Berghuijs, W. R., Wagner, J., et al., 2024. Degradation of Ice-Wedge Polygons Leads to Increased Fluxes of Water and DOC. Science of the Total Environment, 920: 170931. https://doi.org/10.1016/j.scitotenv.2024.170931
    van Huissteden, J., Berrittella, C., Parmentier, F. J. W., et al., 2011. Methane Emissions from Permafrost Thaw Lakes Limited by Lake Drainage. Nature Climate Change, 1: 119–123. https://doi.org/10.1038/nclimate1101
    Walter Anthony, K., Daanen, R., Anthony, P., et al., 2016. Methane Emissions Proportional to Permafrost Carbon Thawed in Arctic Lakes since the 1950s. Nature Geoscience, 9: 679–682. https://doi.org/10.1038/ngeo2795
    Walter Anthony, K., Schneider von Deimling, T., Nitze, I., et al., 2018. 21st-Century Modeled Permafrost Carbon Emissions Accelerated by Abrupt Thaw beneath Lakes. Nature Communications, 9: 3262. https://doi.org/10.1038/s41467-018-05738-9
    Walvoord, M. A., Kurylyk, B. L., 2016. Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone Journal, 15(6): 1–20. https://doi.org/10.2136/vzj2016.01.0010
    Webb, E. E., Liljedahl, A. K., 2023. Diminishing Lake Area across the Northern Permafrost Zone. Nature Geoscience, 16: 202–209. https://doi.org/10.1038/s41561-023-01128-z
    Wei, Z. Q., Du, Z. H., Wang, L., et al., 2021. Sentinel-Based Inventory of Thermokarst Lakes and Ponds across Permafrost Landscapes on the Qinghai-Tibet Plateau. Earth and Space Science, 8(11): e2021EA001950. https://doi.org/10.1029/2021ea001950
    Woo, M., 2012. Permafrost Hydrology. Springer-Verlag Berlin Heidelberg
    Yang, G. B., Zheng, Z. H., Abbott, B. W., et al., 2023. Characteristics of Methane Emissions from Alpine Thermokarst Lakes on the Tibetan Plateau. Nature Communications, 14: 3121. https://doi.org/10.1038/s41467-023-38907-6
    You, Y. H., Yu, Q. H., Pan, X. C., et al., 2017. Thermal Effects of Lateral Supra-Permafrost Water Flow around a Thermokarst Lake on the Qinghai-Tibet Plateau. Hydrological Processes, 31(13): 2429–2437. https://doi.org/10.1002/hyp.11193
    Zhao, L., Sun, Z., Ma, R., et al., 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177–1188. https://doi.org/10.3799/dqkx.2022.204 (in Chinese with English Abstract)
    Zhao, Y. D., Hu, X., 2023. The Diversity and Function of Microbial Community in the Sediment and Terrestrial Area of Thermokarst Lakes. CATENA, 233: 107505. https://doi.org/10.1016/j.catena.2023.107505
    Zhu, X. Y., Campanaro, S., Treu, L., et al., 2020. Metabolic Dependencies Govern Microbial Syntrophies during Methanogenesis in an Anaerobic Digestion Ecosystem. Microbiome, 8(1): 22. https://doi.org/10.1186/s40168-019-0780-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views(28) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return