Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Huajian Wang, Yunyang Wan, Yuke Liu, Jinyou Zhang, Shuichang Zhang. Proven and Potential Microbial Contributions to the Gulong Shale Oil. Journal of Earth Science, 2024, 35(6): 2149-2153. doi: 10.1007/s12583-024-2020-x
Citation: Huajian Wang, Yunyang Wan, Yuke Liu, Jinyou Zhang, Shuichang Zhang. Proven and Potential Microbial Contributions to the Gulong Shale Oil. Journal of Earth Science, 2024, 35(6): 2149-2153. doi: 10.1007/s12583-024-2020-x

Proven and Potential Microbial Contributions to the Gulong Shale Oil

doi: 10.1007/s12583-024-2020-x
More Information
  • Corresponding author: Shuichang Zhang, sczhang@petrochina.com.cn
  • Received Date: 21 Jul 2024
  • Accepted Date: 11 Sep 2024
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bechtel, A., Jia, J. L., Strobl, S. A. I., et al., 2012. Palaeoenvironmental Conditions during Deposition of the Upper Cretaceous Oil Shale Sequences in the Songliao Basin (NE China): Implications from Geochemical Analysis. Organic Geochemistry, 46: 76–95. https://doi.org/10.1016/j.orggeochem.2012.02.003
    Cao, H. S., He, W. T., Chen, F. J., et al., 2021. Integrated Chemostratigraphy (δ13C-δ34S-δ15N) Constrains Cretaceous Lacustrine Anoxic Events Triggered by Marine Sulfate Input. Chemical Geology, 559: 119912. https://doi.org/10.1016/j.chemgeo.2020.119912
    Chikkanna, A., Ghosh, D., Sajeev, K., 2021. Bio-Weathering of Granites from Eastern Dharwar Craton (India): A Tango of Bacterial Metabolism and Mineral Chemistry. Biogeochemistry, 153(3): 303–322. https://doi.org/10.1007/s10533-021-00791-x
    Cluff, M. A., Hartsock, A., MacRae, J. D., et al., 2014. Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells. Environmental Science & Technology, 48(11): 6508–6517. https://doi.org/10.1021/es501173p
    Cuadros, J., 2017. Clay Minerals Interaction with Microorganisms: A Review. Clay Minerals, 52(2): 235–261. https://doi.org/10.1180/claymin.2017.052.2.05
    Feng, Z. H., Fang, W., Li, Z. G., et al., 2011. Depositional Environment of Terrestrial Petroleum Source Rocks and Geochemical Indicators in the Songliao Basin. Science China Earth Sciences, 54(9): 1304–1317. https://doi.org/10.1007/s11430-011-4268-0
    Gao, Y., Wang, C. S., Liu, Z. F., et al., 2015. Diagenetic and Paleoenvironmental Controls on Late Cretaceous Clay Minerals in the Songliao Basin, Northeast China. Clays and Clay Minerals, 63(6): 469–484. https://doi.org/10.1346/ccmn.2015.0630605
    Haddadin, M. S. Y., Abou Arqoub, A. A., Abu Reesh, I., et al., 2009. Kinetics of Hydrocarbon Extraction from Oil Shale Using Biosurfactant Producing Bacteria. Energy Conversion and Management, 50(4): 983–990. https://doi.org/10.1016/j.enconman.2008.12.015
    Hu, H., Liu, J. F., Li, C. Y., et al., 2018. Anaerobic Biodegradation of Partially Hydrolyzed Polyacrylamide in Long-Term Methanogenic Enrichment Cultures from Production Water of Oil Reservoirs. Biodegradation, 29(3): 233–243. https://doi.org/10.1007/s10532-018-9825-1
    Kapse, N., Dagar, S. S., Dhakephalkar, P. K., 2024. Appropriate Characterization of Reservoir Properties and Investigation of Their Effect on Microbial Enhanced Oil Recovery through Simulated Laboratory Studies. Scientific Reports, 14: 15401. https://doi.org/10.1038/s41598-024-65728-4
    Kim, J., Dong, H. L., Seabaugh, J., et al., 2004. Role of Microbes in the Smectite-to-Illite Reaction. Science, 303(5659): 830–832. https://doi.org/10.1126/science.1093245
    Kögler, F., Dopffel, N., Mahler, E., et al., 2021. Influence of Surface Mineralogy on the Activity of Halanaerobium sp. during Microbial Enhanced Oil Recovery (MEOR). Fuel, 290: 119973. https://doi.org/10.1016/j.fuel.2020.119973
    Liu, D., Dong, H., Bishop, M. E., et al., 2012. Microbial Reduction of Structural Iron in Interstratified Illite-Smectite Minerals by a Sulfate-Reducing Bacterium. Geobiology, 10(2): 150–162. https://doi.org/10.1111/j.1472-4669.2011.00307.x
    Liu, X. T., Wang, H. J., Liu, J. R., et al., 2024. Microbial Sulfate Reduction and Its Role in Carbon Sequestration in Marine Sediments. Journal of Earth Science, 35(4): 1378–1381. https://doi.org/10.1007/s12583-024-1998-4
    Liu, Z. W., Liu, Y. K., Du, X. J., et al., 2023. Early Diagenesis in the Lacustrine Ostracods from the Songliao Basin 91.35 Million Years ago and Its Geological Implications. Minerals, 13(1): 5. https://doi.org/10.3390/min13010005
    Lyu, D., Wang, H. J., Li, G., et al., 2023. Paleobiological Evidence of the Paleowater Environment Evolution of the Qingshankou Shale in the Songliao Basin. Oil and Gas Geology, 44(4): 857–868. https://doi.org/10.11743/ogg20230405 (in Chinese with English Abstract)
    Ma, X., Wang, Z. H., Da, Q. A., et al., 2017. Application of Guar Gum Degrading Bacteria in Microbial Remediation of Guar-Based Fracturing Fluid Damage. Energy & Fuels, 31(8): 7894–7903. https://doi.org/10.1021/acs.energyfuels.7b00999
    Miao, Z. W., Zhang, K. H., Zhang, P. F., et al., 2024. The Staged Growth of Bedding-Parallel Fibrous Calcite Veins, from Synsedimentary Period to Oil-Generative Window. Marine and Petroleum Geology, 160: 106660. https://doi.org/10.1016/j.marpetgeo.2023.106660
    Pickel, W., Kus, J., Flores, D., et al., 2017. Classification of Liptinite—ICCP System 1994. International Journal of Coal Geology, 169: 40–61. https://doi.org/10.1016/j.coal.2016.11.004
    Sun, L. D., Liu, H., He, W. Y., et al., 2021. An Analysis of Major Scientific Problems and Research Paths of Gulong Shale Oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 48(3): 527–540. https://doi.org/10.1016/s1876-3804(21)60043-5
    Sun, L. D., Wang, F. L., Bai, X. F., et al., 2024. Discovery of Nano Organo-Clay Complex Pore-Fractures in Shale and Its Scientific Significance: A Case Study of Cretaceous Qingshankou Formation Shale, Songliao Basin, NE China. Petroleum Exploration and Development, 51(4): 813–825. https://doi.org/10.1016/s1876-3804(24)60508-2
    Takai, K., Nakamura, K., Toki, T., et al., 2008. Cell Proliferation at 122 ℃ and Isotopically Heavy CH4 Production by a Hyperthermophilic Methanogen under High-Pressure Cultivation. Proceedings of the National Academy of Sciences of the United States of America, 105(31): 10949–10954. https://doi.org/10.1073/pnas.0712334105
    Thomsen, U., Thamdrup, B., Stahl, D. A., et al., 2004. Pathways of Organic Carbon Oxidation in a Deep Lacustrine Sediment, Lake Michigan. Limnology and Oceanography, 49(6): 2046–2057. https://doi.org/10.4319/lo.2004.49.6.2046
    Wang, H. J., Liu, Y. K., Wang, X. M., et al., 2024. The Source and Sink Process and Its Geological Driving Factors of Shale Organic Matter in the Qingshankou Formation, Songliao Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 43: 306–318. https://doi.org/10.19658/j.issn.1007-2802.2023.42.107 (in Chinese with English Abstract)
    Wei, G. Y., Zhao, M. Y., Sperling, E. A., et al., 2024. Lithium Isotopic Constraints on the Evolution of Continental Clay Mineral Factory and Marine Oxygenation in the Earliest Paleozoic Era. Science Advances, 10(13): eadk2152. https://doi.org/10.1126/sciadv.adk2152
    Wilson, M. J., Wilson, L., 2014. Clay Mineralogy and Shale Instability: An Alternative Conceptual Analysis. Clay Minerals, 49(2): 127–145. https://doi.org/10.1180/claymin.2014.049.2.01
    Xu, S., Zhao, T. X., Cui, X. Q., et al., 2024. Organic-Inorganic Interactions of Clay Minerals and Organic Matter: Action Mechanism and Analysis Techniques. Advances in Geo-Energy Research, 14(3): 161–164. https://doi.org/10.46690/ager.2024.12.01
    Zhang, H., Wang, X. J., Jia, C. Z., et al., 2023. Whole Petroleum System and Hydrocarbon Accumulation Model in Shallow and Medium Strata in Northern Songliao Basin, NE China. Petroleum Exploration and Development, 50(4): 784–797. https://doi.org/10.1016/s1876-3804(23)60428-8
    Zhang, S. C., Wang, H. J., Wang, X. M., et al., 2022. Mesoproterozoic Marine Biological Carbon Pump: Source, Degradation and Enrichment of Organic Matter. Chinese Science Bulletin, 67(15): 1624–1643. https://doi.org/10.1360/tb-2022-0041 (in Chinese with English Abstract)
    Zhang, S. C., Zhang, B., Wang, X. M., et al., 2023. Gulong Shale Oil Enrichment Mechanism and Orderly Distribution of Conventional-Unconventional Oils in the Cretaceous Qingshankou Formation, Songliao Basin, NE China. Petroleum Exploration and Development, 50(5): 1045–1059. https://doi.org/10.1016/s1876-3804(23)60448-3
    Zhang, W. Z., Yang, W. W., Xie, L. Q., 2017. Controls on Organic Matter Accumulation in the Triassic Chang 7 Lacustrine Shale of the Ordos Basin, Central China. International Journal of Coal Geology, 183: 38–51. https://doi.org/10.1016/j.coal.2017.09.015
    Zhu, C. F., Cui, X. Q., He, Y. X., et al., 2020. Extended 3β-Methylhopanes up to C45 in Source Rocks from the Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Organic Geochemistry, 142: 103998. https://doi.org/10.1016/j.orggeochem.2020.103998
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views(34) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return