Bechtel, A., Jia, J. L., Strobl, S. A. I., et al., 2012. Palaeoenvironmental Conditions during Deposition of the Upper Cretaceous Oil Shale Sequences in the Songliao Basin (NE China): Implications from Geochemical Analysis. Organic Geochemistry, 46: 76–95. https://doi.org/10.1016/j.orggeochem.2012.02.003 |
Cao, H. S., He, W. T., Chen, F. J., et al., 2021. Integrated Chemostratigraphy (δ13C-δ34S-δ15N) Constrains Cretaceous Lacustrine Anoxic Events Triggered by Marine Sulfate Input. Chemical Geology, 559: 119912. https://doi.org/10.1016/j.chemgeo.2020.119912 |
Chikkanna, A., Ghosh, D., Sajeev, K., 2021. Bio-Weathering of Granites from Eastern Dharwar Craton (India): A Tango of Bacterial Metabolism and Mineral Chemistry. Biogeochemistry, 153(3): 303–322. https://doi.org/10.1007/s10533-021-00791-x |
Cluff, M. A., Hartsock, A., MacRae, J. D., et al., 2014. Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells. Environmental Science & Technology, 48(11): 6508–6517. https://doi.org/10.1021/es501173p |
Cuadros, J., 2017. Clay Minerals Interaction with Microorganisms: A Review. Clay Minerals, 52(2): 235–261. https://doi.org/10.1180/claymin.2017.052.2.05 |
Feng, Z. H., Fang, W., Li, Z. G., et al., 2011. Depositional Environment of Terrestrial Petroleum Source Rocks and Geochemical Indicators in the Songliao Basin. Science China Earth Sciences, 54(9): 1304–1317. https://doi.org/10.1007/s11430-011-4268-0 |
Gao, Y., Wang, C. S., Liu, Z. F., et al., 2015. Diagenetic and Paleoenvironmental Controls on Late Cretaceous Clay Minerals in the Songliao Basin, Northeast China. Clays and Clay Minerals, 63(6): 469–484. https://doi.org/10.1346/ccmn.2015.0630605 |
Haddadin, M. S. Y., Abou Arqoub, A. A., Abu Reesh, I., et al., 2009. Kinetics of Hydrocarbon Extraction from Oil Shale Using Biosurfactant Producing Bacteria. Energy Conversion and Management, 50(4): 983–990. https://doi.org/10.1016/j.enconman.2008.12.015 |
Hu, H., Liu, J. F., Li, C. Y., et al., 2018. Anaerobic Biodegradation of Partially Hydrolyzed Polyacrylamide in Long-Term Methanogenic Enrichment Cultures from Production Water of Oil Reservoirs. Biodegradation, 29(3): 233–243. https://doi.org/10.1007/s10532-018-9825-1 |
Kapse, N., Dagar, S. S., Dhakephalkar, P. K., 2024. Appropriate Characterization of Reservoir Properties and Investigation of Their Effect on Microbial Enhanced Oil Recovery through Simulated Laboratory Studies. Scientific Reports, 14: 15401. https://doi.org/10.1038/s41598-024-65728-4 |
Kim, J., Dong, H. L., Seabaugh, J., et al., 2004. Role of Microbes in the Smectite-to-Illite Reaction. Science, 303(5659): 830–832. https://doi.org/10.1126/science.1093245 |
Kögler, F., Dopffel, N., Mahler, E., et al., 2021. Influence of Surface Mineralogy on the Activity of Halanaerobium sp. during Microbial Enhanced Oil Recovery (MEOR). Fuel, 290: 119973. https://doi.org/10.1016/j.fuel.2020.119973 |
Liu, D., Dong, H., Bishop, M. E., et al., 2012. Microbial Reduction of Structural Iron in Interstratified Illite-Smectite Minerals by a Sulfate-Reducing Bacterium. Geobiology, 10(2): 150–162. https://doi.org/10.1111/j.1472-4669.2011.00307.x |
Liu, X. T., Wang, H. J., Liu, J. R., et al., 2024. Microbial Sulfate Reduction and Its Role in Carbon Sequestration in Marine Sediments. Journal of Earth Science, 35(4): 1378–1381. https://doi.org/10.1007/s12583-024-1998-4 |
Liu, Z. W., Liu, Y. K., Du, X. J., et al., 2023. Early Diagenesis in the Lacustrine Ostracods from the Songliao Basin 91.35 Million Years ago and Its Geological Implications. Minerals, 13(1): 5. https://doi.org/10.3390/min13010005 |
Lyu, D., Wang, H. J., Li, G., et al., 2023. Paleobiological Evidence of the Paleowater Environment Evolution of the Qingshankou Shale in the Songliao Basin. Oil and Gas Geology, 44(4): 857–868. https://doi.org/10.11743/ogg20230405 (in Chinese with English Abstract) |
Ma, X., Wang, Z. H., Da, Q. A., et al., 2017. Application of Guar Gum Degrading Bacteria in Microbial Remediation of Guar-Based Fracturing Fluid Damage. Energy & Fuels, 31(8): 7894–7903. https://doi.org/10.1021/acs.energyfuels.7b00999 |
Miao, Z. W., Zhang, K. H., Zhang, P. F., et al., 2024. The Staged Growth of Bedding-Parallel Fibrous Calcite Veins, from Synsedimentary Period to Oil-Generative Window. Marine and Petroleum Geology, 160: 106660. https://doi.org/10.1016/j.marpetgeo.2023.106660 |
Pickel, W., Kus, J., Flores, D., et al., 2017. Classification of Liptinite—ICCP System 1994. International Journal of Coal Geology, 169: 40–61. https://doi.org/10.1016/j.coal.2016.11.004 |
Sun, L. D., Liu, H., He, W. Y., et al., 2021. An Analysis of Major Scientific Problems and Research Paths of Gulong Shale Oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 48(3): 527–540. https://doi.org/10.1016/s1876-3804(21)60043-5 |
Sun, L. D., Wang, F. L., Bai, X. F., et al., 2024. Discovery of Nano Organo-Clay Complex Pore-Fractures in Shale and Its Scientific Significance: A Case Study of Cretaceous Qingshankou Formation Shale, Songliao Basin, NE China. Petroleum Exploration and Development, 51(4): 813–825. https://doi.org/10.1016/s1876-3804(24)60508-2 |
Takai, K., Nakamura, K., Toki, T., et al., 2008. Cell Proliferation at 122 ℃ and Isotopically Heavy CH4 Production by a Hyperthermophilic Methanogen under High-Pressure Cultivation. Proceedings of the National Academy of Sciences of the United States of America, 105(31): 10949–10954. https://doi.org/10.1073/pnas.0712334105 |
Thomsen, U., Thamdrup, B., Stahl, D. A., et al., 2004. Pathways of Organic Carbon Oxidation in a Deep Lacustrine Sediment, Lake Michigan. Limnology and Oceanography, 49(6): 2046–2057. https://doi.org/10.4319/lo.2004.49.6.2046 |
Wang, H. J., Liu, Y. K., Wang, X. M., et al., 2024. The Source and Sink Process and Its Geological Driving Factors of Shale Organic Matter in the Qingshankou Formation, Songliao Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 43: 306–318. https://doi.org/10.19658/j.issn.1007-2802.2023.42.107 (in Chinese with English Abstract) |
Wei, G. Y., Zhao, M. Y., Sperling, E. A., et al., 2024. Lithium Isotopic Constraints on the Evolution of Continental Clay Mineral Factory and Marine Oxygenation in the Earliest Paleozoic Era. Science Advances, 10(13): eadk2152. https://doi.org/10.1126/sciadv.adk2152 |
Wilson, M. J., Wilson, L., 2014. Clay Mineralogy and Shale Instability: An Alternative Conceptual Analysis. Clay Minerals, 49(2): 127–145. https://doi.org/10.1180/claymin.2014.049.2.01 |
Xu, S., Zhao, T. X., Cui, X. Q., et al., 2024. Organic-Inorganic Interactions of Clay Minerals and Organic Matter: Action Mechanism and Analysis Techniques. Advances in Geo-Energy Research, 14(3): 161–164. https://doi.org/10.46690/ager.2024.12.01 |
Zhang, H., Wang, X. J., Jia, C. Z., et al., 2023. Whole Petroleum System and Hydrocarbon Accumulation Model in Shallow and Medium Strata in Northern Songliao Basin, NE China. Petroleum Exploration and Development, 50(4): 784–797. https://doi.org/10.1016/s1876-3804(23)60428-8 |
Zhang, S. C., Wang, H. J., Wang, X. M., et al., 2022. Mesoproterozoic Marine Biological Carbon Pump: Source, Degradation and Enrichment of Organic Matter. Chinese Science Bulletin, 67(15): 1624–1643. https://doi.org/10.1360/tb-2022-0041 (in Chinese with English Abstract) |
Zhang, S. C., Zhang, B., Wang, X. M., et al., 2023. Gulong Shale Oil Enrichment Mechanism and Orderly Distribution of Conventional-Unconventional Oils in the Cretaceous Qingshankou Formation, Songliao Basin, NE China. Petroleum Exploration and Development, 50(5): 1045–1059. https://doi.org/10.1016/s1876-3804(23)60448-3 |
Zhang, W. Z., Yang, W. W., Xie, L. Q., 2017. Controls on Organic Matter Accumulation in the Triassic Chang 7 Lacustrine Shale of the Ordos Basin, Central China. International Journal of Coal Geology, 183: 38–51. https://doi.org/10.1016/j.coal.2017.09.015 |
Zhu, C. F., Cui, X. Q., He, Y. X., et al., 2020. Extended 3β-Methylhopanes up to C45 in Source Rocks from the Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Organic Geochemistry, 142: 103998. https://doi.org/10.1016/j.orggeochem.2020.103998 |