Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Yan Du, Hongda Zhang, Mowen Xie, Yujing Jiang, Santos D. Chicas, Jingnan Liu. A Possible Mechanism of High-Speed and Long-Distance Rockslides. Journal of Earth Science, 2024, 35(6): 2158-2162. doi: 10.1007/s12583-024-2025-5
Citation: Yan Du, Hongda Zhang, Mowen Xie, Yujing Jiang, Santos D. Chicas, Jingnan Liu. A Possible Mechanism of High-Speed and Long-Distance Rockslides. Journal of Earth Science, 2024, 35(6): 2158-2162. doi: 10.1007/s12583-024-2025-5

A Possible Mechanism of High-Speed and Long-Distance Rockslides

doi: 10.1007/s12583-024-2025-5
More Information
  • Corresponding author: Jingnan Liu, mutulei@163.com
  • Received Date: 09 Jul 2024
  • Accepted Date: 16 Aug 2024
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Burjánek, J., Gassner-Stamm, G., Poggi, V., et al., 2010. Ambient Vibration Analysis of an Unstable Mountain Slope. Geophysical Journal International, 180(2): 820–828. https://doi.org/10.1111/j.1365-246x.2009.04451.x
    Burjánek, J., Moore, J. R., Yugsi Molina, F. X., et al., 2012. Instrumental Evidence of Normal Mode Rock Slope Vibration. Geophysical Journal International, 188(2): 559–569. https://doi.org/10.1111/j.1365-246x.2011.05272.x
    Crosta, G. B., Agliardi, F., Rivolta, C., et al., 2017. Long-Term Evolution and Early Warning Strategies for Complex Rockslides by Real-Time Monitoring. Landslides, 14(5): 1615–1632. https://doi.org/10.1007/s10346-017-0817-8
    Crosta, G. B., di Prisco, C., Frattini, P., et al., 2014. Chasing a Complete Understanding of the Triggering Mechanisms of a Large Rapidly Evolving Rockslide. Landslides, 11(5): 747–764. https://doi.org/10.1007/s10346-013-0433-1
    Davies, T. R. H., Reznichenko, N. V., McSaveney, M. J., 2020. Energy Budget for a Rock Avalanche: Fate of Fracture-Surface Energy. Landslides, 17(1): 3–13. https://doi.org/10.1007/s10346-019-01224-5
    Di Toro, G., Goldsby, D. L., Tullis, T. E., 2004. Friction Falls towards Zero in Quartz Rock as Slip Velocity Approaches Seismic Rates. Nature, 427: 436–439. https://doi.org/10.1038/nature02249
    Du, Y., Huo, L. C., Xie, M. W., et al., 2021. Monitoring and Early Warning Experiment of Rock Collapse. Chinese Journal of Theoretical and Applied Mechanics, 53(4): 1212–1221 (in Chinese with English Abstract)
    Du, Y., Lu, Y. D., Xie, M. W., et al., 2020. A New Attempt for Early Warning of Unstable Rocks Based on Vibration Parameters. Bulletin of Engineering Geology and the Environment, 79(8): 4363–4368. https://doi.org/10.1007/s10064-020-01839-2
    Du, Y., Wu, Z. X., Xie, M. W., et al., 2019a. Early-Warning Method of Rock Collapse and Its Experimental Verification. Journal of China Coal Society, 44(10): 3069–3075 (in Chinese with English Abstract)
    Du, Y., Xie, M. W., Jiang Y. J., et al., 2019b. Research Progress on Dynamic Monitoring Index for Early Warning of Rock Collapse. Chinese Journal of Engineering, 41(4): 427–435 (in Chinese with English Abstract)
    Du, Y., Xie, M. W., Jiang, Y. J., et al., 2017. Experimental Rock Stability Assessment Using the Frozen-Thawing Test. Rock Mechanics and Rock Engineering, 50(4): 1049–1053. https://doi.org/10.1007/s00603-016-1138-2
    Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches (Sturzstroms) in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309–334. https://doi.org/10.1139/t79-032
    Ekström, G., Stark, C. P., 2013. Simple Scaling of Catastrophic Landslide Dynamics. Science, 339(6126): 1416–1419. https://doi.org/10.1126/science.1232887
    Golshani, A., Oda, M., Okui, Y., et al., 2007. Numerical Simulation of the Excavation Damaged Zone around an Opening in Brittle Rock. International Journal of Rock Mechanics and Mining Sciences, 44(6): 835–845. https://doi.org/10.1016/j.ijrmms.2006.12.005
    Han, L., Chen, S. Z., Shu, J. S., et al., 2019. Experimental Study on Vibration Instability Model of Rock Slope Based on Parallel Chaotic Algorithms. Chaos, Solitons & Fractals, 128: 252–260. https://doi.org/10.1016/j.chaos.2019.07.058
    He, Z., Xie, M. W., Huang, Z. J., et al., 2020. Experimental Hazardous Rock Block Stability Assessment Based on Vibration Feature Parameters. Advances in Civil Engineering, 2020(1): 8837459. https://doi.org/10.1155/2020/8837459
    Jia, B. N., Wu, Z. X., Du, Y., 2019. Real-Time Stability Assessment of Unstable Rocks Based on Fundamental Natural Frequency. International Journal of Rock Mechanics and Mining Sciences, 124: 104134. https://doi.org/10.1016/j.ijrmms.2019.104134
    Li, H. B., Yang, X. G., Sun, H. L., et al., 2019. Monitoring of Displacement Evolution during the Pre-Failure Stage of a Rock Block Using Ground-Based Radar Interferometry. Landslides, 16(9): 1721–1730. https://doi.org/10.1007/s10346-019-01228-1
    Mangeney, A., 2011. Landslide Boost from Entrainment. Nature Geoscience, 4: 77–78. https://doi.org/10.1038/ngeo1077
    Paronuzzi, P., Bolla, A., Rigo, E., 2016. 3D Stress-Strain Analysis of a Failed Limestone Wedge Influenced by an Intact Rock Bridge. Rock Mechanics and Rock Engineering, 49(8): 3223–3242. https://doi.org/10.1007/s00603-016-0963-7
    Qian, Q. H., Zhou, X. P., 2013. Effects of Incompatible Deformation on Failure Mode and Stress Field of Surrounding Rock Mass. Chinese Journal of Rock Mechanics and Engineering, 32(4): 649–656 (in Chinese with English Abstract)
    Qiu, J., 2016. Killer Landslides: The Lasting Legacy of Nepal's Quake. Nature, 532: 428–431. https://doi.org/10.1038/532428a
    Sättele, M., Krautblatter, M., Bründl, M., et al., 2016. Forecasting Rock Slope Failure: How Reliable and Effective are Warning Systems? Landslides, 13(4): 737–750. https://doi.org/10.1007/s10346-015-0605-2
    Walter, M., Schwaderer, U., Joswig, M., 2012. Seismic Monitoring of Precursory Fracture Signals from a Destructive Rockfall in the Vorarlberg Alps, Austria. Natural Hazards and Earth System Sciences, 12(11): 3545–3555. https://doi.org/10.5194/nhess-12-3545-2012
    Wang, F. W., Chen, Y., Liu W. C., et al., 2022. Characteristics and Challenges to Dynamics of Long-Runout Landslides with High-Altitude in Southeast Tibet. Journal of Engineering Geology, 30(6): 1831–1841 (in Chinese with English Abstract)
    Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164–181 (in Chinese with English Abstract)
    Yang, J. T., Xu, C., Jin, X., 2023. Joint Effects and Spatiotemporal Characteristics of the Driving Factors of Landslides in Earthquake Areas. Journal of Earth Science, 34(2): 330–338. https://doi.org/10.1007/s12583-021-1465-4
    Yang, C. M., Yu, W. L., Dong, J. J., et al., 2014. Initiation, Movement, and Run-out of the Giant Tsaoling Landslide—What can We Learn from a Simple Rigid Block Model and a Velocity-Displacement Dependent Friction Law? Engineering Geology, 182: 158–181. https://doi.org/10.1016/j.enggeo.2014.08.008
    Yin, Y. P., Cheng, Y. L., Liang, J. T., et al., 2016. Heavy-Rainfall-Induced Catastrophic Rockslide-Debris Flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 Earthquake. Landslides, 13(1): 9–23. https://doi.org/10.1007/s10346-015-0554-9
    Zhuang, Y., Yin, Y. P., Xing, A. G., et al., 2020. Combined Numerical Investigation of the Yigong Rock Slide-Debris Avalanche and Subsequent Dam-Break Flood Propagation in Tibet, China. Landslides, 17(9): 2217–2229. https://doi.org/10.1007/s10346-020-01449-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(28) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return