Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 2
Apr 2025
Turn off MathJax
Article Contents
Guoxin Chen, Jun Li, Jinxin Chen, Rongsen Du, Yutao Liu, Yuli Qi, Chun-Feng Li, Xingguo Huang. High-Precision Sub-Seafloor Velocity Building Based on Joint Tomography and Deep Learning on OBS Data in the South China Sea. Journal of Earth Science, 2025, 36(2): 830-834. doi: 10.1007/s12583-025-0170-0
Citation: Guoxin Chen, Jun Li, Jinxin Chen, Rongsen Du, Yutao Liu, Yuli Qi, Chun-Feng Li, Xingguo Huang. High-Precision Sub-Seafloor Velocity Building Based on Joint Tomography and Deep Learning on OBS Data in the South China Sea. Journal of Earth Science, 2025, 36(2): 830-834. doi: 10.1007/s12583-025-0170-0

High-Precision Sub-Seafloor Velocity Building Based on Joint Tomography and Deep Learning on OBS Data in the South China Sea

doi: 10.1007/s12583-025-0170-0
More Information
  • Corresponding author: Xingguo Huang, xingguohuang@jlu.edu.cn
  • Received Date: 19 Nov 2024
  • Accepted Date: 01 Jan 2025
  • Issue Publish Date: 30 Apr 2025
  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bian, A. F., Zou, Z. H., Zhou, H. W., et al., 2015. Evaluation of Multi-Scale Full Waveform Inversion with Marine Vertical Cable Data. Journal of Earth Science, 26(4): 481–486. https://doi.org/10.1007/s12583-015-0566-3
    Chen, G. X., Chen, J. X., Jensen, K., et al., 2024a. Joint Data and Model-Driven Simultaneous Inversion of Velocity and Density. Geophysical Journal International, 237(3): 1674–1698. https://doi.org/10.1093/gji/ggae128
    Chen, G. X., Wu, X., Li, J., et al., 2024b. Initial Model Building Method Based on Iterative Deep Learning in Sparse Transform Domain (in Chinese). Annual Meeting of Chinese Geoscience Union (CGU), Xiamen
    Chen, G. X., 2024. Accurate Background Velocity Model Building Method Based on Iterative Deep Learning in Sparse Transform Domain. https://arxiv.org/abs/2407.19419v1
    Cheng, X. Q., Liu, Q. H., Li, P. P., et al., 2019. Inverting Rayleigh Surface Wave Velocities for Crustal Thickness in Eastern Tibet and the Western Yangtze Craton Based on Deep Learning Neural Networks. Nonlinear Processes in Geophysics, 26(2): 61–71. https://doi.org/10.5194/npg-26-61-2019
    Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657–1674 (in Chinese with English Abstract)
    Han, M., Zou, Z., Ma, R., 2021. Deep Learning-Driven Velocity Modeling Based on Seismic Reflection Data and Multi-Scale Training Sets. Oil Geophysical Prospecting, 56(5): 935–946 (in Chinese with English Abstract)
    Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853–1864 (in Chinese with English Abstract)
    Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696–1710 (in Chinese with English Abstract)
    Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(24): 3165–3181. https://doi.org/10.1007/s11434-012-5063-9
    Liu, Y. T., Li, C. F., Wen, Y. L., et al., 2021. Mantle Serpentinization beneath a Failed Rift and Post-Spreading Magmatism in the Northeastern South China Sea Margin. Geophysical Journal International, 225(2): 811–828. https://doi.org/10.1093/gji/ggab006
    Sambolian, S., Gorszczyk, A., Operto, S., et al., 2021. Mitigating the Ill-Posedness of First-Arrival Traveltime Tomography Using Slopes: Application to the Eastern Nankai Trough (Japan) OBS Data Set. Geophysical Journal International, 227(2): 898–921. https://doi.org/10.1093/gji/ggab262
    Wamriew, D., Charara, M., Pissarenko, D., 2022. Joint Event Location and Velocity Model Update in Real-Time for Downhole Microseismic Monitoring: A Deep Learning Approach. Computers & Geosciences, 158: 104965. https://doi.org/10.1016/j.cageo.2021.104965
    Xie, Y. H., Ye, Y. F., Huang, X. G., et al., 2024. Advancements and New Frontiers in Offshore Seismic Exploration Technology. Journal of Earth Science, 35(5): 1749–1757. https://doi.org/10.1007/s12583-024-0075-3
    Yang, F. S., Ma, J. W., 2019. Deep-Learning Inversion: A Next-Generation Seismic Velocity Model Building Method. Geophysics, 84(4): R583–R599. https://doi.org/10.1190/geo2018-0249.1
    Yang, H. C., Li, P., Ma, F., et al., 2023. Building Near-Surface Velocity Models by Integrating the First-Arrival Traveltime Tomography and Supervised Deep Learning. Geophysical Journal International, 235(1): 326–341. https://doi.org/10.1093/gji/ggad223
    Zhang, J. Z., Zhao, M. H., Ding, W. W., et al., 2023. New Insights into the Rift-to-Drift Process of the Northern South China Sea Margin Constrained by a Three-Dimensional Wide-Angle Seismic Velocity Model. Journal of Geophysical Research: Solid Earth, 128(4): e2022JB026171. https://doi.org/10.1029/2022jb026171
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(7) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return