Bian, A. F., Zou, Z. H., Zhou, H. W., et al., 2015. Evaluation of Multi-Scale Full Waveform Inversion with Marine Vertical Cable Data. Journal of Earth Science, 26(4): 481–486. https://doi.org/10.1007/s12583-015-0566-3 |
Chen, G. X., Chen, J. X., Jensen, K., et al., 2024a. Joint Data and Model-Driven Simultaneous Inversion of Velocity and Density. Geophysical Journal International, 237(3): 1674–1698. https://doi.org/10.1093/gji/ggae128 |
Chen, G. X., Wu, X., Li, J., et al., 2024b. Initial Model Building Method Based on Iterative Deep Learning in Sparse Transform Domain (in Chinese). Annual Meeting of Chinese Geoscience Union (CGU), Xiamen |
Chen, G. X., 2024. Accurate Background Velocity Model Building Method Based on Iterative Deep Learning in Sparse Transform Domain. https://arxiv.org/abs/2407.19419v1 |
Cheng, X. Q., Liu, Q. H., Li, P. P., et al., 2019. Inverting Rayleigh Surface Wave Velocities for Crustal Thickness in Eastern Tibet and the Western Yangtze Craton Based on Deep Learning Neural Networks. Nonlinear Processes in Geophysics, 26(2): 61–71. https://doi.org/10.5194/npg-26-61-2019 |
Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657–1674 (in Chinese with English Abstract) |
Han, M., Zou, Z., Ma, R., 2021. Deep Learning-Driven Velocity Modeling Based on Seismic Reflection Data and Multi-Scale Training Sets. Oil Geophysical Prospecting, 56(5): 935–946 (in Chinese with English Abstract) |
Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853–1864 (in Chinese with English Abstract) |
Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696–1710 (in Chinese with English Abstract) |
Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(24): 3165–3181. https://doi.org/10.1007/s11434-012-5063-9 |
Liu, Y. T., Li, C. F., Wen, Y. L., et al., 2021. Mantle Serpentinization beneath a Failed Rift and Post-Spreading Magmatism in the Northeastern South China Sea Margin. Geophysical Journal International, 225(2): 811–828. https://doi.org/10.1093/gji/ggab006 |
Sambolian, S., Gorszczyk, A., Operto, S., et al., 2021. Mitigating the Ill-Posedness of First-Arrival Traveltime Tomography Using Slopes: Application to the Eastern Nankai Trough (Japan) OBS Data Set. Geophysical Journal International, 227(2): 898–921. https://doi.org/10.1093/gji/ggab262 |
Wamriew, D., Charara, M., Pissarenko, D., 2022. Joint Event Location and Velocity Model Update in Real-Time for Downhole Microseismic Monitoring: A Deep Learning Approach. Computers & Geosciences, 158: 104965. https://doi.org/10.1016/j.cageo.2021.104965 |
Xie, Y. H., Ye, Y. F., Huang, X. G., et al., 2024. Advancements and New Frontiers in Offshore Seismic Exploration Technology. Journal of Earth Science, 35(5): 1749–1757. https://doi.org/10.1007/s12583-024-0075-3 |
Yang, F. S., Ma, J. W., 2019. Deep-Learning Inversion: A Next-Generation Seismic Velocity Model Building Method. Geophysics, 84(4): R583–R599. https://doi.org/10.1190/geo2018-0249.1 |
Yang, H. C., Li, P., Ma, F., et al., 2023. Building Near-Surface Velocity Models by Integrating the First-Arrival Traveltime Tomography and Supervised Deep Learning. Geophysical Journal International, 235(1): 326–341. https://doi.org/10.1093/gji/ggad223 |
Zhang, J. Z., Zhao, M. H., Ding, W. W., et al., 2023. New Insights into the Rift-to-Drift Process of the Northern South China Sea Margin Constrained by a Three-Dimensional Wide-Angle Seismic Velocity Model. Journal of Geophysical Research: Solid Earth, 128(4): e2022JB026171. https://doi.org/10.1029/2022jb026171 |