| Allam, A. A., Kroll, K. A., Milliner, C. W. D., et al., 2019. Effects of Fault Roughness on Coseismic Slip and Earthquake Locations. Journal of Geophysical Research: Solid Earth, 124(11): 11336–11349.  https://doi.org/10.1029/2018jb016216 | 
		
				
				| Chen, B., Song, C., Chen, Y., et al., 2024. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 MS6.2 Jishishan (Gansu, China) Earthquake. Geomatics and Information Science of Wuhan University (Online). https://doi.org/10.13203/J.whugis20230497 (in Chinese with English Abstract) | 
		
				
				| Costantini, M., 1998. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 813–821.  https://doi.org/10.1109/36.673674 | 
		
				
				| Feng, W. P., Li, Z. H., Elliott, J. R., et al., 2013. The 2011 MW6.8 Burma Earthquake: Fault Constraints Provided by Multiple SAR Techniques. Geophysical Journal International, 195(1): 650–660.  https://doi.org/10.1093/gji/ggt254 | 
		
				
				| Li, Q., Li, C., Zhao, B., et al., 2024. Estimated Seismic Source Parameters for 2020 Dingri MW5.6 Earthquake in Xizang and Study on the Stress Triggering. Chinese Journal of Geophysics, 67(1): 172–188 (in Chinese with English Abstract) | 
		
				
				| Li, Z. H., Elliott, J. R., Feng, W. P., et al., 2011. The 2010 MW6.8 Yushu (Qinghai, China) Earthquake: Constraints Provided by InSAR and Body Wave Seismology. Journal of Geophysical Research, 116(B10): B10302.  https://doi.org/10.1029/2011jb008358 | 
		
				
				| Li, Z., Zhu, W., Yu, C., et al., 2023. Development Status and Trends of Imaging Geodesy. Acta Geodaetica et Cartographica Sinica, 52(11): 1805–1834 (in Chinese with English Abstract) | 
		
				
				| Liu, H. H., Song, C., Li, Z. H., et al., 2024. A New Method for the Identification of Earthquake-Damaged Buildings Using Sentinel-1 Multitemporal Coherence Optimized by Homogeneous SAR Pixels and Histogram Matching. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17: 7124–7143.  https://doi.org/10.1109/jstars.2024.3377218 | 
		
				
				| Liu, Z. J., Li, Z. H., Yu, C., et al., 2024. Stress Triggering and Future Seismic Hazards Implied by Four Large Earthquakes in the Pamir from 2015 to 2023 Revealed by Sentinel-1 Radar Interferometry. Geophysical Journal International, 237(2): 887–901.  https://doi.org/10.1093/gji/ggae079 | 
		
				
				| Michel, R., Avouac, J. P., Taboury, J., 1999. Measuring near Field Coseismic Displacements from SAR Images: Application to the Landers Earthquake. Geophysical Research Letters, 26(19): 3017–3020.  https://doi.org/10.1029/1999gl900524 | 
		
				
				| Okada, Y., 1992. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 82(2): 1018–1040.  https://doi.org/10.1785/bssa0820021018 | 
		
				
				| Sandwell, D. T., Price, E. J., 1998. Phase Gradient Approach to Stacking Interferograms. Journal of Geophysical Research: Solid Earth, 103(B12): 30183–30204.  https://doi.org/10.1029/1998jb900008 | 
		
				
				| Song, C., Yu, C., Li, Z. H., et al., 2022. Triggering and Recovery of Earthquake Accelerated Landslides in Central Italy Revealed by Satellite Radar Observations. Nature Communications, 13: 7278.  https://doi.org/10.1038/s41467-022-35035-5 | 
		
				
				| Stein, R. S., 1999. The Role of Stress Transfer in Earthquake Occurrence. Nature, 402: 605–609.  https://doi.org/10.1038/45144 | 
		
				
				| Toda, S., Stein, R., Sevilgen, V., et al., 2011. Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching-User Guide. Open File Report. https://doi.org/pubs.usgs.gov/of/2011/1060/ | 
		
				
				| Wang, M., Shen, Z. K., 2020. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.  https://doi.org/10.1029/2019jb018774 | 
		
				
				| Xu, L. W., Mohanna, S., Meng, L. S., et al., 2023. The Overall-Subshear and Multi-Segment Rupture of the 2023 MW7.8 Kahramanmaraş, Turkey Earthquake in Millennia Supercycle. Communications Earth & Environment, 4: 379.  https://doi.org/10.1038/s43247-023-01030-x | 
		
				
				| Xu, Y. R., Zhang, Y. B., Liu, R. C., et al., 2022. Preliminary Analyses of Landslides and Sand Liquefaction Triggered by 22 May, 2021, Maduo MW7.3 Earthquake on Northern Tibetan Plateau, China. Landslides, 19(1): 155–164.  https://doi.org/10.1007/s10346-021-01811-5 | 
		
				
				| Yu, C., Li, Z. H., Song, C., et al., 2024. Fault Structure and Slip Mechanics of the 2022 MW6.7 Menyuan Earthquake Revealed by Coseismic Rupture Observations. Tectonophysics, 872: 230192.  https://doi.org/10.1016/j.tecto.2023.230192 | 
		
				
				| Zebker, H. A., Villasenor, J., 1992. Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5): 950–959.  https://doi.org/10.1109/36.175330 | 
		
				
				| Zielke, O., Galis, M., Mai, P. M., 2017. Fault Roughness and Strength Heterogeneity Control Earthquake Size and Stress Drop. Geophysical Research Letters, 44(2): 777–783.  https://doi.org/10.1002/2016gl071700 |