Bian, S., Tan, X. B., Zuza, A. V., et al., 2025. How Does the Newly-Formed Drainage Divide Migrate after a River Capture Event? Earth and Planetary Science Letters, 651: 119165. https://doi.org/10.1016/j.epsl.2024.119165 |
Farr, T. G., Kobrick, M., 2000. Shuttle Radar Topography Mission Produces a Wealth of Data. Eos, Transactions American Geophysical Union, 81(48): 583–585. https://doi.org/10.1029/EO081i048p00583 |
Gallen, S. F., Wegmann, K. W., 2017. River Profile Response to Normal Fault Growth and Linkage: an Example from the Hellenic Forearc of South-Central Crete, Greece. Earth Surface Dynamics, 5(1): 161–186. https://doi.org/10.5194/esurf-5-161-2017 |
Howard, A. D., Kerby, G., 1983. Channel Changes in Badlands. Geological Society of America Bulletin, 94(6): 739–752. https://doi.org/10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2 doi: 10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2 |
Howard, A. D., 1994. A Detachment-Limited Model of Drainage Basin Evolution. Water Resources Research, 30(7): 2261–2285. https://doi.org/10.1029/94WR00757 |
Kirby, E., Whipple, K. X., Tang, W. Q., et al., 2003. Distribution of Active Rock Uplift along the Eastern Margin of the Tibetan Plateau: Inferences from Bedrock Channel Longitudinal Profiles. Journal of Geophysical Research: Solid Earth, 108(B4): 24. https://doi.org/10.1029/2001JB000861 |
Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54–75. https://doi.org/10.1016/j.jsg.2012.07.009 |
Ma, Y., Zheng, D. W., Zhang, H. P., et al., 2021. Plio-Pleistocene Establishment of Irtysh River in Junggar, Northwest China: Implications for Siberian-Arctic River System Evolution and Resulting Climate Impact. Geophysical Research Letters, 48(12): e2021GL093217. https://doi.org/10.1029/2021GL093217 |
Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1): 1–47. https://doi.org/10.1046/j.1365-246X.1998.00567.x |
Pan, B. T., Li, Q., Hu, X. F., et al., 2015. Bedrock Channels Response to Differential Rock Uplift in Eastern Qilian Mountain along the Northeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 100: 1–19. https://doi.org/10.1016/j.jseaes.2014.12.009 |
Pavano, F., Pazzaglia, F. J., Catalano, S., 2016. Knickpoints as Geomorphic Markers of Active tectonics: A Case Study from Northeastern Sicily (Southern Italy). Lithosphere, 8(6): 633–648. https://doi.org/10.1130/L577.1 |
Schwanghart, W., Scherler, D., 2014. Short Communication: TopoToolbox 2 – MATLAB-Based Software for Topographic Analysis and Modeling in Earth Surface Sciences. Earth Surface Dynamics, 2(1): 1–7. https://doi.org/10.5194/esurf-2-1-2014 |
Shao, Y. X., van der Woerd, J., Liu-Zeng, J., et al., 2023. Shortening Rates and Recurrence of Large Earthquakes from Folded and Uplifted Terraces in the Western Danghe Nan Shan Foreland, North Tibet. Journal of Geophysical Research: Solid Earth, 128(1): e2021JB023736. https://doi.org/10.1029/2021JB023736 |
Snyder, N. P., Whipple, K. X., Tucker, G. E., et al., 2000. Landscape Response to Tectonic forcing: Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region, Northern California. GSA Bulletin, 112(8): 1250–1263. https://doi.org/10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2 doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2 |
Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677. https://doi.org/10.1126/science.105978 |
van der Woerd, J., Xu, X. W., Li, H. B., et al., 2001. Rapid Active Thrusting along the Northwestern Range Front of the Tanghe Nan Shan (Western Gansu, China). Journal of Geophysical Research: Solid Earth, 106(B12): 30475–30504. https://doi.org/10.1029/2001JB000583 |
Wang, D., Dong, Y. P., Xi, Z. P., et al., 2024. Evaluation of the Relative Tectonic Activity from the Faults in the Gengma-Lancang-Menghai Seismic Belt (Southwestern China). Journal of Earth Science, 35(1): 131–143. https://doi.org/10.1007/s12583-021-1565-1 |
Wang, J. Y., He, Z. T., 2020. Responses of Stream Geomorphic Indices to Piedmont Fault Activity in the Daqingshan Area of China. Journal of Earth Science, 31(5): 978–987. https://doi.org/10.1007/s12583-020-1321-y |
Wang, W., Shao, Y. X., Zhang, J. Y., et al., 2023. Channel Profiles Reveal Fault Activity along the Longmen Shan, Eastern Tibetan Plateau. Remote Sensing, 15(19): 4721. https://doi.org/10.3390/rs15194721 |
Wang, Y. Z., Zhang, H. P., Zheng, D. W., et al., 2018. River Longitudinal Profiles under Transient State and the Related Tectonic Signals. Quaternary Sciences, 38(1): 220–231 (in Chinese with English Abstract) |
Wang, Y. Z., Zhang, H. P., Zheng, D. W., et al., 2017. How a Stationary Knickpoint Is sustained: New Insights into the Formation of the Deep Yarlung Tsangpo Gorge. Geomorphology, 285: 28–43. https://doi.org/10.1016/j.geomorph.2017.02.005 |
Wang, Y. Z., Zheng, D. W., Zhang, H. P., et al., 2019. The Distribution of Active Rock Uplift in the Interior of the Western Qilian Shan, NE Tibetan Plateau: Inference from Bedrock Channel Profiles. Tectonophysics, 759: 15–29. https://doi.org/10.1016/j.tecto.2019.04.001 |
Whipple, K. X., Tucker, G. E., 2002. Implications of Sediment-Flux-Dependent River Incision Models for Landscape Evolution. Journal of Geophysical Research: Solid Earth, 107(B2): ETG3-1–ETG3-20. https://doi.org/10.1029/2000JB000044 |
Whipple, K. X., 2004. Bedrock Rivers and the Geomorphology of Active Orogens. Annual Review of Earth and Planetary Sciences, 32: 151–185. https://doi.org/10.1146/annurev.earth.32.101802.120356 |
Wobus, C., Whipple, K. X., Kirby, E., et al., 2006. Tectonics from Topography: Procedures, Promise, and Pitfalls. Special Paper of the Geological Society of America, 398: 55–74. https://doi.org/10.1130/2006.2398(04) |
Wobus, C. W., Hodges, K. V., Whipple, K. X., 2003. Has Focused Denudation Sustained Active Thrusting at the Himalayan Topographic Front? Geology, 31(10): 861–864. https://doi.org/10.1130/G19730.1 |
Xu, Q., Hetzel, R., Hampel, A., et al., 2021. Slip Rate of the Danghe Nan Shan Thrust Fault from 10Be Exposure Dating of Folded River Terraces: Implications for the Strain Distribution in Northern Tibet. Tectonics, 40(4): e2020TC006584. https://doi.org/10.1029/2020TC006584 |
Yang, C. T., Simoes, F. J., 1998. Simulation and Prediction of River Morphologic Changes Using GSTARS 2.0. In: Proceedings of the 3rd International Conference on Hydro-Science and -Engineering, Aug. 31-Sep. 3, 1998, Cottbus/Berlin. 1–8. http://www.sjrdotmdl.org/concept_model/phys-chem_model/documents/300001732.pdf |
Zhang, P. -Z., Shen, Z. K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809–812. https://doi.org/10.1130/g20554.1 |
Zheng, D. W., Clark, M. K., Zhang, P. Z., et al., 2010. Erosion, Fault Initiation and Topographic Growth of the North Qilian Shan (Northern Tibetan Plateau). Geosphere, 6(6): 937–941. https://doi.org/10.1130/GES00523.1 |
Zheng, W. J., Zhang, P. Z., He, W. G., et al., 2013. Transformation of Displacement between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults. Tectonophysics, 584: 267–280. https://doi.org/10.1016/j.tecto.2012.01.006 |
Zhou, C., Tan, X. B., Liu, Y. D., et al., 2022. Ongoing Westward Migration of Drainage Divides in Eastern Tibet, Quantified from Topographic Analysis. Geomorphology, 402: 108123. https://doi.org/10.1016/j.geomorph.2022.108123 |
Zuza, A. V., Wu, C., Reith, R. C., et al., 2018. Tectonic Evolution of the Qilian Shan: An Early Paleozoic Orogen Reactivated in the Cenozoic. GSA Bulletin, 130(5/6): 881–925. https://doi.org/10.1130/B31721.1 |