Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Yanxiu Shao, Xucong Zheng, Wei Wang, Xiaobo Zou. Tectonic Uplift Variations along the Danghe Nan Shan Constrained by Fluvial Geomorphic Indices. Journal of Earth Science, 2025, 36(4): 1829-1834. doi: 10.1007/s12583-025-0191-8
Citation: Yanxiu Shao, Xucong Zheng, Wei Wang, Xiaobo Zou. Tectonic Uplift Variations along the Danghe Nan Shan Constrained by Fluvial Geomorphic Indices. Journal of Earth Science, 2025, 36(4): 1829-1834. doi: 10.1007/s12583-025-0191-8

Tectonic Uplift Variations along the Danghe Nan Shan Constrained by Fluvial Geomorphic Indices

doi: 10.1007/s12583-025-0191-8
More Information
  • Corresponding author: Yanxiu Shao, shaoyx@tju.edu.cn
  • Received Date: 06 Dec 2024
  • Accepted Date: 05 Mar 2025
  • Available Online: 05 Aug 2025
  • Issue Publish Date: 30 Aug 2025
  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bian, S., Tan, X. B., Zuza, A. V., et al., 2025. How Does the Newly-Formed Drainage Divide Migrate after a River Capture Event? Earth and Planetary Science Letters, 651: 119165. https://doi.org/10.1016/j.epsl.2024.119165
    Farr, T. G., Kobrick, M., 2000. Shuttle Radar Topography Mission Produces a Wealth of Data. Eos, Transactions American Geophysical Union, 81(48): 583–585. https://doi.org/10.1029/EO081i048p00583
    Gallen, S. F., Wegmann, K. W., 2017. River Profile Response to Normal Fault Growth and Linkage: an Example from the Hellenic Forearc of South-Central Crete, Greece. Earth Surface Dynamics, 5(1): 161–186. https://doi.org/10.5194/esurf-5-161-2017
    Howard, A. D., Kerby, G., 1983. Channel Changes in Badlands. Geological Society of America Bulletin, 94(6): 739–752. https://doi.org/10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2 doi: 10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2
    Howard, A. D., 1994. A Detachment-Limited Model of Drainage Basin Evolution. Water Resources Research, 30(7): 2261–2285. https://doi.org/10.1029/94WR00757
    Kirby, E., Whipple, K. X., Tang, W. Q., et al., 2003. Distribution of Active Rock Uplift along the Eastern Margin of the Tibetan Plateau: Inferences from Bedrock Channel Longitudinal Profiles. Journal of Geophysical Research: Solid Earth, 108(B4): 24. https://doi.org/10.1029/2001JB000861
    Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
    Ma, Y., Zheng, D. W., Zhang, H. P., et al., 2021. Plio-Pleistocene Establishment of Irtysh River in Junggar, Northwest China: Implications for Siberian-Arctic River System Evolution and Resulting Climate Impact. Geophysical Research Letters, 48(12): e2021GL093217. https://doi.org/10.1029/2021GL093217
    Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1): 1–47. https://doi.org/10.1046/j.1365-246X.1998.00567.x
    Pan, B. T., Li, Q., Hu, X. F., et al., 2015. Bedrock Channels Response to Differential Rock Uplift in Eastern Qilian Mountain along the Northeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 100: 1–19. https://doi.org/10.1016/j.jseaes.2014.12.009
    Pavano, F., Pazzaglia, F. J., Catalano, S., 2016. Knickpoints as Geomorphic Markers of Active tectonics: A Case Study from Northeastern Sicily (Southern Italy). Lithosphere, 8(6): 633–648. https://doi.org/10.1130/L577.1
    Schwanghart, W., Scherler, D., 2014. Short Communication: TopoToolbox 2 – MATLAB-Based Software for Topographic Analysis and Modeling in Earth Surface Sciences. Earth Surface Dynamics, 2(1): 1–7. https://doi.org/10.5194/esurf-2-1-2014
    Shao, Y. X., van der Woerd, J., Liu-Zeng, J., et al., 2023. Shortening Rates and Recurrence of Large Earthquakes from Folded and Uplifted Terraces in the Western Danghe Nan Shan Foreland, North Tibet. Journal of Geophysical Research: Solid Earth, 128(1): e2021JB023736. https://doi.org/10.1029/2021JB023736
    Snyder, N. P., Whipple, K. X., Tucker, G. E., et al., 2000. Landscape Response to Tectonic forcing: Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region, Northern California. GSA Bulletin, 112(8): 1250–1263. https://doi.org/10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2 doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677. https://doi.org/10.1126/science.105978
    van der Woerd, J., Xu, X. W., Li, H. B., et al., 2001. Rapid Active Thrusting along the Northwestern Range Front of the Tanghe Nan Shan (Western Gansu, China). Journal of Geophysical Research: Solid Earth, 106(B12): 30475–30504. https://doi.org/10.1029/2001JB000583
    Wang, D., Dong, Y. P., Xi, Z. P., et al., 2024. Evaluation of the Relative Tectonic Activity from the Faults in the Gengma-Lancang-Menghai Seismic Belt (Southwestern China). Journal of Earth Science, 35(1): 131–143. https://doi.org/10.1007/s12583-021-1565-1
    Wang, J. Y., He, Z. T., 2020. Responses of Stream Geomorphic Indices to Piedmont Fault Activity in the Daqingshan Area of China. Journal of Earth Science, 31(5): 978–987. https://doi.org/10.1007/s12583-020-1321-y
    Wang, W., Shao, Y. X., Zhang, J. Y., et al., 2023. Channel Profiles Reveal Fault Activity along the Longmen Shan, Eastern Tibetan Plateau. Remote Sensing, 15(19): 4721. https://doi.org/10.3390/rs15194721
    Wang, Y. Z., Zhang, H. P., Zheng, D. W., et al., 2018. River Longitudinal Profiles under Transient State and the Related Tectonic Signals. Quaternary Sciences, 38(1): 220–231 (in Chinese with English Abstract)
    Wang, Y. Z., Zhang, H. P., Zheng, D. W., et al., 2017. How a Stationary Knickpoint Is sustained: New Insights into the Formation of the Deep Yarlung Tsangpo Gorge. Geomorphology, 285: 28–43. https://doi.org/10.1016/j.geomorph.2017.02.005
    Wang, Y. Z., Zheng, D. W., Zhang, H. P., et al., 2019. The Distribution of Active Rock Uplift in the Interior of the Western Qilian Shan, NE Tibetan Plateau: Inference from Bedrock Channel Profiles. Tectonophysics, 759: 15–29. https://doi.org/10.1016/j.tecto.2019.04.001
    Whipple, K. X., Tucker, G. E., 2002. Implications of Sediment-Flux-Dependent River Incision Models for Landscape Evolution. Journal of Geophysical Research: Solid Earth, 107(B2): ETG3-1–ETG3-20. https://doi.org/10.1029/2000JB000044
    Whipple, K. X., 2004. Bedrock Rivers and the Geomorphology of Active Orogens. Annual Review of Earth and Planetary Sciences, 32: 151–185. https://doi.org/10.1146/annurev.earth.32.101802.120356
    Wobus, C., Whipple, K. X., Kirby, E., et al., 2006. Tectonics from Topography: Procedures, Promise, and Pitfalls. Special Paper of the Geological Society of America, 398: 55–74. https://doi.org/10.1130/2006.2398(04)
    Wobus, C. W., Hodges, K. V., Whipple, K. X., 2003. Has Focused Denudation Sustained Active Thrusting at the Himalayan Topographic Front? Geology, 31(10): 861–864. https://doi.org/10.1130/G19730.1
    Xu, Q., Hetzel, R., Hampel, A., et al., 2021. Slip Rate of the Danghe Nan Shan Thrust Fault from 10Be Exposure Dating of Folded River Terraces: Implications for the Strain Distribution in Northern Tibet. Tectonics, 40(4): e2020TC006584. https://doi.org/10.1029/2020TC006584
    Yang, C. T., Simoes, F. J., 1998. Simulation and Prediction of River Morphologic Changes Using GSTARS 2.0. In: Proceedings of the 3rd International Conference on Hydro-Science and -Engineering, Aug. 31-Sep. 3, 1998, Cottbus/Berlin. 1–8. http://www.sjrdotmdl.org/concept_model/phys-chem_model/documents/300001732.pdf
    Zhang, P. -Z., Shen, Z. K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809–812. https://doi.org/10.1130/g20554.1
    Zheng, D. W., Clark, M. K., Zhang, P. Z., et al., 2010. Erosion, Fault Initiation and Topographic Growth of the North Qilian Shan (Northern Tibetan Plateau). Geosphere, 6(6): 937–941. https://doi.org/10.1130/GES00523.1
    Zheng, W. J., Zhang, P. Z., He, W. G., et al., 2013. Transformation of Displacement between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults. Tectonophysics, 584: 267–280. https://doi.org/10.1016/j.tecto.2012.01.006
    Zhou, C., Tan, X. B., Liu, Y. D., et al., 2022. Ongoing Westward Migration of Drainage Divides in Eastern Tibet, Quantified from Topographic Analysis. Geomorphology, 402: 108123. https://doi.org/10.1016/j.geomorph.2022.108123
    Zuza, A. V., Wu, C., Reith, R. C., et al., 2018. Tectonic Evolution of the Qilian Shan: An Early Paleozoic Orogen Reactivated in the Cenozoic. GSA Bulletin, 130(5/6): 881–925. https://doi.org/10.1130/B31721.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(25) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return