Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Xiaohan Zhao, Wen Zhang, Junqi Chen, Yaoyao Wang, Qing Liu. Integrating UAV Photogrammetry and Thermal Infrared Entropy in Evaluating Rock Mass Characteristics. Journal of Earth Science, 2025, 36(4): 1853-1866. doi: 10.1007/s12583-025-0192-7
Citation: Xiaohan Zhao, Wen Zhang, Junqi Chen, Yaoyao Wang, Qing Liu. Integrating UAV Photogrammetry and Thermal Infrared Entropy in Evaluating Rock Mass Characteristics. Journal of Earth Science, 2025, 36(4): 1853-1866. doi: 10.1007/s12583-025-0192-7

Integrating UAV Photogrammetry and Thermal Infrared Entropy in Evaluating Rock Mass Characteristics

doi: 10.1007/s12583-025-0192-7
More Information
  • Corresponding author: Wen Zhang, zhang_wen@jlu.edu.cn
  • Received Date: 05 Feb 2025
  • Accepted Date: 25 Mar 2025
  • Available Online: 05 Aug 2025
  • Issue Publish Date: 30 Aug 2025
  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abou Jaoude, A., 2017. The Paradigm of Complex Probability and Claude Shannon's Information Theory. Systems Science & Control Engineering, 5(1): 380–425. https://doi.org/10.1080/21642583.2017.1367970
    Anand, K., Bianconi, G., 2009. Entropy Measures for networks: Toward an Information Theory of Complex Topologies. Physical Review E, 80(4): 045102. https://doi.org/10.1103/physreve.80.045102
    Aydan, Ö., Shimizu, Y., Ichikawa, Y., 1989. The Effective Failure Modes and Stability of Slopes in Rock Mass with Two Discontinuity Sets. Rock Mechanics and Rock Engineering, 22(3): 163–188. https://doi.org/10.1007/BF01470985
    Carlomagno, G. M., 2007. Heat Flux Sensors and Infrared Thermography. Journal of Visualization, 10(1): 11–16. https://doi.org/10.1007/BF03181795
    Chen, J. Q., Zhang, W., Lu, C. W., et al., 2025. Evolution and Migration Patterns of Sediments in an Earthquake-Affected Catchment in Wenchuan, Sichuan Province, China. CATENA, 249: 108712. https://doi.org/10.1016/j.catena.2025.108712
    Chen, Y. F., Lin, H., Liang, L. Y., 2023. Freeze-Thaw Failure Characteristics and Strength Loss of Non-Penetrating Fractured Rock Mass with Different Fracture Densities. Theoretical and Applied Fracture Mechanics, 124: 103792. https://doi.org/10.1016/j.tafmec.2023.103792
    Cheng, Q., Tang, C. -S., Lin, Z. -Z., et al., 2022. Measurement of Water Content at Bare Soil Surface with Infrared Thermal Imaging Technology. Journal of Hydrology, 615: 128715. https://doi.org/10.1016/j.jhydrol.2022.128715
    Congress, S. S. C., Puppala, A. J., Kumar, P., et al., 2021. Methodology for Resloping of Rock Slope Using 3D Models from UAV-CRP Technology. Journal of Geotechnical and Geoenvironmental Engineering, 147(9): 05021005. https://doi.org/10.1061/(asce)gt.1943-5606.0002591
    Cropper, W. H., 1986. Rudolf Clausius and the Road to Entropy. American Journal of Physics, 54(12): 1068–1074. https://doi.org/10.1119/1.14740
    Filice, F., Pezzo, A., Lollino, P., et al., 2022. Multi-Approach for the Assessment of Rock Slope Stability Using In-Field and UAV Investigations. Bulletin of Engineering Geology and the Environment, 81(12): 502. https://doi.org/10.1007/s10064-022-03007-0
    Franzosi, F., Crippa, C., Derron, M. H., et al., 2023. Slope-Scale Remote Mapping of Rock Mass Fracturing by Modeling Cooling Trends Derived from Infrared Thermography. Remote Sensing, 15(18): 4525. https://doi.org/10.3390/rs15184525
    Gallay, M., Lloyd, C. D., McKinley, J., et al., 2013. Assessing Modern Ground Survey Methods and Airborne Laser Scanning for Digital Terrain modelling: A Case Study from the Lake District, England. Computers & Geosciences, 51: 216–227. https://doi.org/10.1016/j.cageo.2012.08.015
    Grechi, G., Fiorucci, M., Marmoni, G. M., et al., 2021. 3D Thermal Monitoring of Jointed Rock Masses through Infrared Thermography and Photogrammetry. Remote Sensing, 13(5): 957. https://doi.org/10.3390/rs13050957
    Hasan, M., Shang, Y. J., Meng, Q. S., 2023. Evaluation of Rock Mass Units Using a Non-Invasive Geophysical Approach. Scientific Reports, 13: 14493. https://doi.org/10.1038/s41598-023-41570-y
    Hirsh, J. B., Mar, R. A., Peterson, J. B., 2012. Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety. Psychological Review, 119(2): 304–320. https://doi.org/10.1037/a0026767
    Jiang, Y. J., Li, B., Yamashita, Y., 2009. Simulation of Cracking near a Large Underground Cavern in a Discontinuous Rock Mass Using the Expanded Distinct Element Method. International Journal of Rock Mechanics and Mining Sciences, 46(1): 97–106. https://doi.org/10.1016/j.ijrmms.2008.05.004
    Lai, X. P., Shan, P. F., Cai, M. F., et al., 2015. Comprehensive Evaluation of High-Steep Slope Stability and Optimal High-Steep Slope Design by 3D Physical Modeling. International Journal of Minerals, Metallurgy, and Materials, 22(1): 1–11. https://doi.org/10.1007/s12613-015-1036-8
    Li, C., Zhang, R. T., Zhu, J. B., et al., 2024. Model Test Study on Response of Weathered Rock Slope to Rainfall Infiltration under Different Conditions. Journal of Earth Science, 35(4): 1316–1333. https://doi.org/10.1007/s12583-022-1704-3
    Li, S. L., Qiu, C., Huang, J. K., et al., 2022. Stability Analysis of a High-Steep Dump Slope under Different Rainfall Conditions. Sustainability, 14(18): 11148. https://doi.org/10.3390/su141811148
    Li, X., Song, Z. P., Zhi, B., et al., 2024. Intelligent Identification of Rock Mass Structural Based on Point Cloud Deep Learning Technology. Construction and Building Materials, 456: 139340. https://doi.org/10.1016/j.conbuildmat.2024.139340
    Li, Z. Z., Chen, J. P., Cao, C., et al., 2025. Enhancing Long-Term Prediction of Non-Homogeneous Landslides Incorporating Spatiotemporal Graph Convolutional Networks and InSAR. Engineering Geology, 347: 107917. https://doi.org/10.1016/j.enggeo.2025.107917
    Lisjak, A., Grasselli, G., 2014. A Review of Discrete Modeling Techniques for Fracturing Processes in Discontinuous Rock Masses. Journal of Rock Mechanics and Geotechnical Engineering, 6(4): 301–314. https://doi.org/10.1016/j.jrmge.2013.12.007
    Liu, C., Liu, X. L., Peng, X. C., et al., 2019. Application of 3D-DDA Integrated with Unmanned Aerial Vehicle–Laser Scanner (UAV-LS) Photogrammetry for Stability Analysis of a Blocky Rock Mass Slope. Landslides, 16(9): 1645–1661. https://doi.org/10.1007/s10346-019-01196-6
    Liu, M. M., Shi, Z. M., Li, B., et al., 2024. Analysis of Dynamic Response and Failure Mode of Bedding Rock Slopes Subject to Strong Earthquakes Based on DEM⁃FDM Coupling. Earth Science, 49(8): 2799–2812. https://doi.org/10.3799/dqkx.2023.062 (in Chinese with English Abstract)
    Loche, M., Scaringi, G., Blahůt, J., et al., 2022. Investigating the Potential of Infrared Thermography to Inform on Physical and Mechanical Properties of Soils for Geotechnical Engineering. Remote Sensing, 14(16): 4067. https://doi.org/10.3390/rs14164067
    Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583–596. https://doi.org/10.1007/s12583-022-1625-1
    Loperte, A., Soldovieri, F., Palombo, A., et al., 2016. An Integrated Geophysical Approach for Water Infiltration Detection and Characterization at Monte Cotugno Rock-Fill Dam (Southern Italy). Engineering Geology, 211: 162–170. https://doi.org/10.1016/j.enggeo.2016.07.005
    Ma, G. W., An, X. M., 2008. Numerical Simulation of Blasting-Induced Rock Fractures. International Journal of Rock Mechanics and Mining Sciences, 45(6): 966–975. https://doi.org/10.1016/j.ijrmms.2007.12.002
    Mineo, S., Caliò, D., Pappalardo, G., 2022. UAV-Based Photogrammetry and Infrared Thermography Applied to Rock Mass Survey for Geomechanical Purposes. Remote Sensing, 14(3): 473. https://doi.org/10.3390/rs14030473
    Pantelidis, L., 2009. Rock Slope Stability Assessment through Rock Mass Classification Systems. International Journal of Rock Mechanics and Mining Sciences, 46(2): 315–325. https://doi.org/10.1016/j.ijrmms.2008.06.003
    Pine, R. J., Coggan, J. S., Flynn, Z. N., et al., 2006. The Development of a New Numerical Modelling Approach for Naturally Fractured Rock Masses. Rock Mechanics and Rock Engineering, 39(5): 395–419. https://doi.org/10.1007/s00603-006-0083-x
    Rodriguez, J., Macciotta, R., Hendry, M. T., et al., 2020. UAVs for Monitoring, Investigation, and Mitigation Design of a Rock Slope with Multiple Failure Mechanisms—A Case Study. Landslides, 17(9): 2027–2040. https://doi.org/10.1007/s10346-020-01416-4
    Šašak, J., Gallay, M., Kaňuk, J., et al., 2019. Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain. Remote Sensing, 11(18): 2154. https://doi.org/10.3390/rs11182154
    Scholtès, L., Donzé, F. V., 2012. Modelling Progressive Failure in Fractured Rock Masses Using a 3D Discrete Element Method. International Journal of Rock Mechanics and Mining Sciences, 52: 18–30. https://doi.org/10.1016/j.ijrmms.2012.02.009
    Sestras, P., Bilașco, Ș., Roșca, S., et al., 2022. Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar. Remote Sensing, 14(22): 5822. https://doi.org/10.3390/rs14225822
    Shang, J., West, L. J., Hencher, S. R., et al., 2018. Geological Discontinuity persistence: Implications and Quantification. Engineering Geology, 241: 41–54. https://doi.org/10.1016/j.enggeo.2018.05.010
    Śledź, S., Ewertowski, M. W., Piekarczyk, J., 2021. Applications of Unmanned Aerial Vehicle (UAV) Surveys and Structure from Motion Photogrammetry in Glacial and Periglacial Geomorphology. Geomorphology, 378: 107620. https://doi.org/10.1016/j.geomorph.2021.107620
    Tian, J. J., Li, T. T., Pei, X. J., et al., 2024. Experimental Study on Multistage Seismic Damage Process of Bedding Rock Slope: A Case Study of the Xinmo Landslide. Journal of Earth Science, 35(5): 1594–1612. https://doi.org/10.1007/s12583-023-1829-z
    Wang, J. C., Xu, H. H., Chen, W., et al., 2022. Evaluation Method for Rock Mass Structure Integrity Based on Borehole Multivariate Data. International Journal of Geomechanics, 22(1): 04021248. https://doi.org/10.1061/(asce)gm.1943-5622.0002232
    Wang, J. C., Zheng, J., Guo, J. C., et al., 2024. A Method for Evaluating the Maximum Bending Degree of Flexural Toppling Rock Masses Based on the Rock Tensile Strain-Softening Model. Journal of Earth Science, 35(4): 1243–1253. https://doi.org/10.1007/s12583-022-1805-z
    Wang, Q. Y., Yang, W., Li, Y. H., et al., 2023. In-situ Fluid Phase Variation along the Thermal Maturation Gradient in Shale Petroleum Systems and Its Impact on Well Production Performance. Journal of Earth Science, 34(4): 985–1001. https://doi.org/10.1007/s12583-022-1693-2
    Wang, S. N., Zhang, W., Zhao, X. H., et al., 2024. Automatic Identification and Interpretation of Discontinuities of Rock Slope from a 3D Point Cloud Based on UAV Nap-of-the-Object Photogrammetry. International Journal of Rock Mechanics and Mining Sciences, 178: 105774. https://doi.org/10.1016/j.ijrmms.2024.105774
    Xia, L., Zheng, Y. H., Yu, Q. C., 2016. Estimation of the REV Size for Blockiness of Fractured Rock Masses. Computers and Geotechnics, 76: 83–92. https://doi.org/10.1016/j.compgeo.2016.02.016
    Xie, X. H., Deng, H. C., Li, Y., et al., 2022. Investigation of the Oriented Structure Characteristics of Shale Using Fractal and Structural Entropy Theory. Fractal and Fractional, 6(12): 734. https://doi.org/10.3390/fractalfract6120734
    Yang, J. P., Chen, W. Z., Dai, Y. H., et al., 2014. Numerical Determination of Elastic Compliance Tensor of Fractured Rock Masses by Finite Element Modeling. International Journal of Rock Mechanics and Mining Sciences, 70: 474–482. https://doi.org/10.1016/j.ijrmms.2014.06.007
    Ye, Z., Xu, Q., Liu, Q., et al., 2024. 3D Distinct Element Back Analysis Based on Rock Structure Modelling of SfM Point Clouds: The Case of the 2019 Pinglu Rockfall of Kaili, China. Journal of Earth Science, 35(5): 1568–1582. https://doi.org/10.1007/s12583-022-1667-4
    Zhang, W., Zhao, X. H., Pan, X. J., et al., 2022. Characterization of High and Steep Slopes and 3D Rockfall Statistical Kinematic Analysis for Kangyuqu Area, China. Engineering Geology, 308: 106807. https://doi.org/10.1016/j.enggeo.2022.106807
    Zhang, W., Han, J. L., Lu, C. W., et al., 2024. Geometric Searching of 3D Critical Slip Surface of a Non-Persistent Fracture-Dominated Rock Slope. Computers and Geotechnics, 173: 106493. https://doi.org/10.1016/j.compgeo.2024.106493
    Zhang, W., Yin, H., Chen, J. P., et al., 2025. Identification and Thermal Characteristics of Linear Discontinuities on a High-Steep Slope Using UAV with Thermal Infrared Imager. International Journal of Rock Mechanics and Mining Sciences, 186: 106025. https://doi.org/10.1016/j.ijrmms.2025.106025
    Zhang, Z. F., Huang, M., Tang, Z. C., 2024. Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle. Earth Science, 49(8): 2826–2838 (in Chinese with English Abstract)
    Zhao, M. Y., Chen, J. P., Song, S. Y., et al., 2023. Proposition of UAV Multi-Angle Nap-of-the-Object Image Acquisition Framework Based on a Quality Evaluation System for a 3D Real Scene Model of a High-Steep Rock Slope. International Journal of Applied Earth Observation and Geoinformation, 125: 103558. https://doi.org/10.1016/j.jag.2023.103558
    Zhao, M. Y., Song, S. Y., Wang, F. Y., et al., 2024. A Method to Interpret Fracture Aperture of Rock Slope Using Adaptive Shape and Unmanned Aerial Vehicle Multi-Angle Nap-of-the-Object Photogrammetry. Journal of Rock Mechanics and Geotechnical Engineering, 16(3): 924–941. https://doi.org/10.1016/j.jrmge.2023.07.010
    Zhou, H. F., Ye, F., Fu, W. X., et al., 2024. Dynamic Effect of Landslides Triggered by Earthquake: A Case Study in Moxi Town of Luding County, China. Journal of Earth Science, 35(1): 221–234. https://doi.org/10.1007/s12583-022-1806-y
    Zhou, W., Chen, F. L., Guo, H. D., et al., 2020. UAV Laser Scanning Technology: A Potential Cost-Effective Tool for Micro-Topography Detection over Wooded Areas for Archaeological Prospection. International Journal of Digital Earth, 13(11): 1279–1301. https://doi.org/10.1080/17538947.2019.1711209
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(22) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return