An, W., Hu, X. M., Garzanti, E., et al., 2021. New Precise Dating of the India-Asia Collision in the Tibetan Himalaya at 61 Ma. Geophysical Research Letters, 48(3): e2020GL090641. https://doi.org/10.1029/2020GL090641 |
Aminov, J., Ding, L., Mamadjonov, Y., et al., 2017. Pamir Plateau Formation and Crustal Thickening before the India-Asia Collision Inferred from Dating and Petrology of the 110–92 Ma Southern Pamir Volcanic Sequence. Gondwana Research, 51: 310–326. https://doi.org/10.1016/j.gr.2017.08.003 |
Carrapa, B., Mustapha, F. S., Cosca, M., et al., 2014. Multisystem Dating of Modern River Detritus from Tajikistan and China: Implications for Crustal Evolution and Exhumation of the Pamir. Lithosphere, 6(6): 443–455. https://doi.org/10.1130/L360.1 |
Chapman, J. B., Ducea, M. N., DeCelles, P. G., et al., 2015. Tracking Changes in Crustal Thickness during Orogenic Evolution with Sr/Y: An Example from the North American Cordillera. Geology, 43(10): 919–922. https://doi.org/10.1130/G36996.1 |
Chapman, J. B., Scoggin, S. H., Kapp, P., et al., 2018a. Mesozoic to Cenozoic Magmatic History of the Pamir. Earth and Planetary Science Letters, 482: 181–192. https://doi.org/10.1016/j.epsl.2017.10.041 |
Chapman, J. B., Robinson, A. C., Carrapa, B., et al., 2018b. Cretaceous Shortening and Exhumation History of the South Pamir Terrane. Lithosphere, 10(4): 494–511. https://doi.org/10.1130/L691.1 |
Chen, S. Q., Chen, H. L., 2020. Late Cenozoic Activity of the Tashkurgan Normal Fault and Implications for the Origin of the Kongur Shan Extensional System, Eastern Pamir. Journal of Earth Science, 31(4): 723–734. https://doi.org/10.1007/s12583-020-1282-1 |
Chen, Y., Zhang, Q. H., Chen, L., et al., 2024. Intra-Oceanic Subduction Termination and Reinitiation of the Eastern Neo-Tethys in Myanmar. Journal of Earth Science, 35(3): 1053–1058. https://doi.org/10.1007/s12583-024-2009-5 |
DeCelles, P. G., Kapp, P., Gehrels, G. E., et al., 2014. Paleocene-Eocene Foreland Basin Evolution in the Himalaya of Southern Tibet and Nepal: Implications for the Age of Initial India-Asia Collision. Tectonics, 33(5): 824–849. https://doi.org/10.1002/2014TC003522 |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033 |
Gehrels, G., Kapp, P., DeCelles, P., et al., 2011. Detrital Zircon Geochronology of Pre-Tertiary Strata in the Tibetan-Himalayan Orogen. Tectonics, 30(5): TC5016. https://doi.org/10.1029/2011TC002868 |
Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299–306. https://doi.org/10.1016/j.epsl.2014.07.005 |
Guo, Z. F., Wilson, M., Zhang, L. H., et al., 2014. The Role of Subduction Channel Mélanges and Convergent Subduction Systems in the Petrogenesis of Post-Collisional K-Rich Mafic Magmatism in NW Tibet. Lithos, 198/199: 184–201. https://doi.org/10.1016/j.lithos.2014.03.020 |
Guo, Z. F., Wilson, M., 2019. Late Oligocene–Early Miocene Transformation of Postcollisional Magmatism in Tibet. Geology, 47(8): 776–780. https://doi.org/10.1130/g46147.1 |
Hu, F. Y., Ducea, M. N., Liu, S. W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7: 7058. https://doi.org/10.1038/s41598-017-07849-7 |
Ke, S., Teng, F. Z., Li, S. G., et al., 2016. Mg, Sr, and O Isotope Geochemistry of Syenites from Northwest Xinjiang, China: Tracing Carbonate Recycling during Tethyan Oceanic Subduction. Chemical Geology, 437: 109–119. https://doi.org/10.1016/j.chemgeo.2016.05.002 |
Kufner, S. K., Schurr, B., Sippl, C., et al., 2016. Deep India Meets Deep Asia: Lithospheric Indentation, Delamination and Break-off under Pamir and Hindu Kush (Central Asia). Earth and Planetary Science Letters, 435: 171–184. https://doi.org/10.1016/j.epsl.2015.11.046 |
Li, J. Y., Xia, Y. Q., Zhang, X. L., et al., 2024. Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China. Journal of Earth Science, 35(4): 1130–1148. https://doi.org/10.1007/s12583-021-1603-z |
Li, Y. P., Robinson, A. C., Zucali, M., et al., 2022. Mesozoic Tectonic Evolution in the Kurgovat-Vanch Complex, NW Pamir. Tectonics, 41(10): e2021TC007180. https://doi.org/10.1029/2021TC007180 |
Lieu, W. K., Stern, R. J., 2019. The Robustness of Sr/Y and La/Yb as Proxies for Crust Thickness in Modern Arcs. Geosphere, 15(3): 621–641. https://doi.org/10.1130/GES01667.1 |
Liu, D. L., Li, H. B., Sun, Z. M., et al., 2017. Cenozoic Episodic Uplift and Kinematic Evolution between the Pamir and Southwestern Tien Shan. Tectonophysics, 712: 438–454. https://doi.org/10.1016/j.tecto.2017.06.009 |
Liu, L. J., Hou, M. C., Chen, Y., et al., 2017. Late Cretaceous Granitoids in Karakorum, Northwest Tibet: petrogenesis and Tectonic Implications. International Geology Review, 59(2): 151–165. https://doi.org/10.1080/00206814.2016.1214087 |
Liu, X. Q., Zhang, C. L., Hao, X. S., et al., 2020. Early Cretaceous Granitoids in the Southern Pamir: Implications for the Meso-Tethys Evolution of the Pamir Plateau. Lithos, 362: 105492. https://doi.org/10.1016/j.lithos.2020.105492 |
Liu, Z., Zhu, D. C., Rezeau, H., et al., 2022. Late Cretaceous Transition from Calc-Alkaline to Alkaline Magmatism in the Eastern Anatolian Plateau: Implications for Microblock Collision Timing. Journal of Petrology, 63(12): egac119. https://doi.org/10.1093/petrology/egac119 |
Lee, C. -T. A., Morton, D. M., 2015. High Silica granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23–31. https://doi.org/10.1016/j.epsl.2014.10.040 |
Lu, Z. W., Guo, X. Y., Gao, R., et al., 2022. Active Construction of Southernmost Tibet Revealed by Deep Seismic Imaging. Nature Communications, 13: 3143. https://doi.org/10.1038/s41467-022-30887-3 |
Ma, L., Wang, Q., Li, Z. X., et al., 2013. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese: Lithosphere-Asthenosphere Interaction during Slab Roll-back and an Insight into Early Late Cretaceous (ca. 100–80 Ma) Magmatic "Flare-up" in Southern Lhasa (Tibet). Lithos, 172/173: 17–30. https://doi.org/10.1016/j.lithos.2013.03.007 |
Ma, X., Dan, W., Wang, J., et al., 2023. Cretaceous Magmatic Migration and Flare-up in Pamir-Karakoram. Lithos, 454/455: 107285. https://doi.org/10.1016/j.lithos.2023.107285 |
Ma, X., 2024. Petrogenesis of Cretaceous Igneous Rocks in Central-South Pamir: From Continental Arc Magmatic Flare-up to Intraplate Small-Scale Magmatism: [Dissertation]. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English Abstract) |
Moghadam, H. S., Li, Q. L., Griffin, W. L., et al., 2022. Temporal Changes in Subduction- to Collision-Related Magmatism in the Neotethyan Orogen: The Southeast Iran Example. Earth-Science Reviews, 226: 103930. https://doi.org/10.1016/j.earscirev.2022.103930 |
Negredo, A. M., Replumaz, A., Villaseñor, A., et al., 2007. Modeling the Evolution of Continental Subduction Processes in the Pamir-Hindu Kush Region. Earth and Planetary Science Letters, 259(1/2): 212–225. https://doi.org/10.1016/j.epsl.2007.04.043 |
Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2016. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786 |
Replumaz, A., Capitanio, F. A., Guillot, S., et al., 2014. The Coupling of Indian Subduction and Asian Continental Tectonics. Gondwana Research, 26(2): 608–626. https://doi.org/10.1016/j.gr.2014.04.003 |
Robinson, A. C., Yin, A., Manning, C. E., et al., 2004. Tectonic Evolution of the Northeastern Pamir: Constraints from the Northern Portion of the Cenozoic Kongur Shan Extensional System, Western China. GSA Bulletin, 116(7/8): 953–973. https://doi.org/10.1130/B25375.1 |
Robinson, A. C., Ducea, M., Lapen, T. J., 2012. Detrital Zircon and Isotopic Constraints on the Crustal Architecture and Tectonic Evolution of the Northeastern Pamir. Tectonics, 31(2): TC2016. https://doi.org/10.1029/2011TC003013 |
Robinson, A. C., 2015. Mesozoic Tectonics of the Gondwanan Terranes of the Pamir Plateau. Journal of Asian Earth Sciences, 102: 170–179. https://doi.org/10.1016/j.jseaes.2014.09.012 |
Rutte, D., Ratschbacher, L., Schneider, S., et al., 2017. Building the Pamir-Tibetan Plateau—Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir: 1. Geometry and Kinematics. Tectonics, 36(3): 342–384. https://doi.org/10.1002/2016TC004293 |
Schwab, M., Ratschbacher, L., Siebel, W., et al., 2004. Assembly of the Pamirs: Age and Origin of Magmatic Belts from the Southern Tien Shan to the Southern Pamirs and Their Relation to Tibet. Tectonics, 23(4): TC4002. https://doi.org/10.1029/2003TC001583 |
Sobel, E. R., Chen, J., Schoenbohm, L. M., et al., 2013. Oceanic-Style Subduction Controls Late Cenozoic Deformation of the Northern Pamir Orogen. Earth and Planetary Science Letters, 363: 204–218. https://doi.org/10.1016/j.epsl.2012.12.009 |
Sun, J. M., Xiao, W. J., Windley, B. F., et al., 2016. Provenance Change of Sediment Input in the Northeastern Foreland of Pamir Related to Collision of the Indian Plate with the Kohistan-Ladakh Arc at around 47 Ma. Tectonics, 35(2): 315–338. https://doi.org/10.1002/2015TC003974 |
Tang, G. J., Wyman, D. A., Dan, W., et al., 2023. Magma Migration and Surface Uplift in Pamir–Western Tibet Driven by Deep Lithospheric Dynamics. Geology, 51(9): 813–817. https://doi.org/10.1130/g51216.1 |
Tang, G. J., Wyman, D. A., Dan, W., et al., 2024. Protracted and Progressive Crustal Melting during Continental Collision in the Pamir and Plateau Growth. Journal of Petrology, 65(4): egae024. https://doi.org/10.1093/petrology/egae024 |
Tao, Z. L., Yin, J. Y., Fowler, M., et al., 2024a. Geodynamic Evolution of the Proto-Tethys Ocean in the West Kunlun Orogenic Belt, Northwest Tibetan Plateau: Implications from the Subarc Crust and Lithospheric Mantle Modification. Journal of Petrology, 65(10): egae097. https://doi.org/10.1093/petrology/egae097 |
Tao, Z. L., Yin, J. Y., Spencer, C. J., et al., 2024b. Subduction Polarity Reversal Facilitated by Plate Coupling during Arc-Continent Collision: Evidence from the Western Kunlun Orogenic Belt, Northwest Tibetan Plateau. Geology, 52(4): 308–313. https://doi.org/10.1130/G51847.1 |
Villarreal, D. P., Robinson, A. C., Chapman, J. B., et al., 2023. Early Cretaceous Displacement on the Tanymas Thrust Fault, Northern Pamir, Tajikistan, and Regional Tectonic Implications. Journal of Asian Earth Sciences: X, 9: 100147. https://doi.org/10.1016/j.jaesx.2023.100147 |
Wang, J., Wang, Q., Ma, L., et al., 2023. Rapid Recycling of Subducted Sediments in the Subcontinental Lithospheric Mantle. Journal of Petrology, 64(8): egad056. https://doi.org/10.1093/petrology/egad056 |
Wang, Y. M., Yin, J. Y., Thomson, S. N., et al., 2024. Meso–Cenozoic Exhumation of the Altai-Sayan Region: Constrained by Available Low-Temperature Thermochronology. Journal of Earth Science, 35(6): 2138–2143. https://doi.org/10.1007/s12583-024-2016-6 |
White, W. M., 1993. 238U/204Pb in MORB and Open System Evolution of the Depleted Mantle. Earth and Planetary Science Letters, 115(1/2/3/4): 211–226. https://doi.org/10.1016/0012-821X(93)90223-V |
Xia, W. H., Yin, J. Y., He, Z. Y., et al., 2025. Meso–Cenozoic Tectonic and Thermal History of the Kuqa Depression, Tarim Basin: Insights from Low-Temperature Thermochronology and Vitrinite Reflectance. Journal of Earth Science. https://doi.org/10.1007/s12583-025-2027-y |
Xiao, W. Â. J., Windley, B. Â. F., Liu, D. Â. Y., et al., 2005. Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic–Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia. The Journal of Geology, 113(6): 687–705. https://doi.org/10.1086/449326 |
Xue, S., Zhang, W. Z., Ling, M. X., et al., 2023. Large-Scale Cretaceous Adakitic Magmatism Induced by Water-Fluxed Melting of Continental Crust during the North China Craton Destruction. Journal of Petrology, 64(9): egad066. https://doi.org/10.1093/petrology/egad066 |
Yang, F., Yin, J. Y., Xiao, W. J., et al., 2024. Early Cretaceous Continental Arc Magmatism in the Wakhan Corridor, South Pamir: Mantle Evolution and Geodynamic Processes during Flat Subduction of the Neo-Tethyan Oceanic Slab. GSA Bulletin, 136(9/10): 4175–4194. https://doi.org/10.1130/B37411.1 |
Yang, F., Yin, J. Y., Yang, Z. M., et al., 2025. Petrogenesis of Late Miocene High Ba-Sr Granitoids in Eastern Pamir, Northwest Tibetan Plateau: Insights into Lithospheric Mantle Evolution and Geodynamic Processes during India-Asia Bidirectional Subduction. Journal of Petrology, 66(4): egaf026. https://doi.org/10.1093/petrology/egaf026 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Yin, J. Y., Xiao, W. J., Sun, M., et al., 2020. Petrogenesis of Early Cambrian Granitoids in the Western Kunlun Orogenic Belt, Northwest Tibet: Insight into Early Stage Subduction of the Proto-Tethys Ocean. GSA Bulletin, 132(9/10): 2221–2240. https://doi.org/10.1130/B35408.1 |
Yin, J. Y., Xiao, W. J., Wang, T., et al., 2024. Maturation from Oceanic Arcs to Continental Crust: Insights from Paleozoic Magmatism in West Junggar, NW China. Earth-Science Reviews, 253: 104795. https://doi.org/10.1016/j.earscirev.2024.104795 |
Zanchi, A., Gaetani, M., 2011. The Geology of the Karakoram Range, Pakistan: The New 1 : 100 000 Geological Map of Central-Western Karakoram. Italian Journal of Geosciences, 130(2): 161–262. https://doi.org/10.3301/IJG.2011.09 |
Zhang, C. L., Zou, H. B., Liu, X. Q., 2022. Cretaceous Basalt-Andesite Sequence in the Southern Pamir: Arc-Back-Arc Architecture at the Pamir Plateau Genetically Related to the Northward Flat Subductions of the Neo-Tethys Ocean. Lithos, 422/423: 106747. https://doi.org/10.1016/j.lithos.2022.106747 |
Zhang, H. R., Yang, T. N., Hou, Z. Q., et al., 2020. Magmatic Expression of Tectonic Transition from Oceanic Subduction to Continental Collision: Insights from the Middle Triassic Rhyolites of the North Qiangtang Block. Gondwana Research, 87: 67–82. https://doi.org/10.1016/j.gr.2020.05.012 |
Zhao, J. M., Yuan, X. H., Liu, H. B., et al., 2010. The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11229–11233. https://doi.org/10.1073/pnas.1001921107 |
Zhao, L. M., Li, Y. L., Xiang, H., et al., 2023. A Devonian Shoshonitic Appinite-Granite Suite in the North Qinling Orogenic Belt: Implications for Partial Melting of a Water-Fluxed Lithospheric Mantle in an Extensional Setting. Journal of Petrology, 64(6): egad040. https://doi.org/10.1093/petrology/egad040 |