Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Fan Yang, Jiyuan Yin, Mike Fowler, Andrew C. Kerr, Zaili Tao. Cretaceous to Cenozoic Magmatic and Crustal Evolution of the Pamir-West Kunlun Orogenic Belt. Journal of Earth Science, 2025, 36(4): 1820-1828. doi: 10.1007/s12583-025-0195-4
Citation: Fan Yang, Jiyuan Yin, Mike Fowler, Andrew C. Kerr, Zaili Tao. Cretaceous to Cenozoic Magmatic and Crustal Evolution of the Pamir-West Kunlun Orogenic Belt. Journal of Earth Science, 2025, 36(4): 1820-1828. doi: 10.1007/s12583-025-0195-4

Cretaceous to Cenozoic Magmatic and Crustal Evolution of the Pamir-West Kunlun Orogenic Belt

doi: 10.1007/s12583-025-0195-4
More Information
  • Corresponding author: Jiyuan Yin, yinjiyuan1983@163.com
  • Received Date: 16 Apr 2025
  • Accepted Date: 30 Apr 2025
  • Available Online: 05 Aug 2025
  • Issue Publish Date: 30 Aug 2025
  • Electronic Supplementary Materials:
    Supplementary material (Table S1) is available in the online version of this article at https://doi.org/10.1007/s12583-025-0195-4.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • An, W., Hu, X. M., Garzanti, E., et al., 2021. New Precise Dating of the India-Asia Collision in the Tibetan Himalaya at 61 Ma. Geophysical Research Letters, 48(3): e2020GL090641. https://doi.org/10.1029/2020GL090641
    Aminov, J., Ding, L., Mamadjonov, Y., et al., 2017. Pamir Plateau Formation and Crustal Thickening before the India-Asia Collision Inferred from Dating and Petrology of the 110–92 Ma Southern Pamir Volcanic Sequence. Gondwana Research, 51: 310–326. https://doi.org/10.1016/j.gr.2017.08.003
    Carrapa, B., Mustapha, F. S., Cosca, M., et al., 2014. Multisystem Dating of Modern River Detritus from Tajikistan and China: Implications for Crustal Evolution and Exhumation of the Pamir. Lithosphere, 6(6): 443–455. https://doi.org/10.1130/L360.1
    Chapman, J. B., Ducea, M. N., DeCelles, P. G., et al., 2015. Tracking Changes in Crustal Thickness during Orogenic Evolution with Sr/Y: An Example from the North American Cordillera. Geology, 43(10): 919–922. https://doi.org/10.1130/G36996.1
    Chapman, J. B., Scoggin, S. H., Kapp, P., et al., 2018a. Mesozoic to Cenozoic Magmatic History of the Pamir. Earth and Planetary Science Letters, 482: 181–192. https://doi.org/10.1016/j.epsl.2017.10.041
    Chapman, J. B., Robinson, A. C., Carrapa, B., et al., 2018b. Cretaceous Shortening and Exhumation History of the South Pamir Terrane. Lithosphere, 10(4): 494–511. https://doi.org/10.1130/L691.1
    Chen, S. Q., Chen, H. L., 2020. Late Cenozoic Activity of the Tashkurgan Normal Fault and Implications for the Origin of the Kongur Shan Extensional System, Eastern Pamir. Journal of Earth Science, 31(4): 723–734. https://doi.org/10.1007/s12583-020-1282-1
    Chen, Y., Zhang, Q. H., Chen, L., et al., 2024. Intra-Oceanic Subduction Termination and Reinitiation of the Eastern Neo-Tethys in Myanmar. Journal of Earth Science, 35(3): 1053–1058. https://doi.org/10.1007/s12583-024-2009-5
    DeCelles, P. G., Kapp, P., Gehrels, G. E., et al., 2014. Paleocene-Eocene Foreland Basin Evolution in the Himalaya of Southern Tibet and Nepal: Implications for the Age of Initial India-Asia Collision. Tectonics, 33(5): 824–849. https://doi.org/10.1002/2014TC003522
    Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033
    Gehrels, G., Kapp, P., DeCelles, P., et al., 2011. Detrital Zircon Geochronology of Pre-Tertiary Strata in the Tibetan-Himalayan Orogen. Tectonics, 30(5): TC5016. https://doi.org/10.1029/2011TC002868
    Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299–306. https://doi.org/10.1016/j.epsl.2014.07.005
    Guo, Z. F., Wilson, M., Zhang, L. H., et al., 2014. The Role of Subduction Channel Mélanges and Convergent Subduction Systems in the Petrogenesis of Post-Collisional K-Rich Mafic Magmatism in NW Tibet. Lithos, 198/199: 184–201. https://doi.org/10.1016/j.lithos.2014.03.020
    Guo, Z. F., Wilson, M., 2019. Late Oligocene–Early Miocene Transformation of Postcollisional Magmatism in Tibet. Geology, 47(8): 776–780. https://doi.org/10.1130/g46147.1
    Hu, F. Y., Ducea, M. N., Liu, S. W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7: 7058. https://doi.org/10.1038/s41598-017-07849-7
    Ke, S., Teng, F. Z., Li, S. G., et al., 2016. Mg, Sr, and O Isotope Geochemistry of Syenites from Northwest Xinjiang, China: Tracing Carbonate Recycling during Tethyan Oceanic Subduction. Chemical Geology, 437: 109–119. https://doi.org/10.1016/j.chemgeo.2016.05.002
    Kufner, S. K., Schurr, B., Sippl, C., et al., 2016. Deep India Meets Deep Asia: Lithospheric Indentation, Delamination and Break-off under Pamir and Hindu Kush (Central Asia). Earth and Planetary Science Letters, 435: 171–184. https://doi.org/10.1016/j.epsl.2015.11.046
    Li, J. Y., Xia, Y. Q., Zhang, X. L., et al., 2024. Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China. Journal of Earth Science, 35(4): 1130–1148. https://doi.org/10.1007/s12583-021-1603-z
    Li, Y. P., Robinson, A. C., Zucali, M., et al., 2022. Mesozoic Tectonic Evolution in the Kurgovat-Vanch Complex, NW Pamir. Tectonics, 41(10): e2021TC007180. https://doi.org/10.1029/2021TC007180
    Lieu, W. K., Stern, R. J., 2019. The Robustness of Sr/Y and La/Yb as Proxies for Crust Thickness in Modern Arcs. Geosphere, 15(3): 621–641. https://doi.org/10.1130/GES01667.1
    Liu, D. L., Li, H. B., Sun, Z. M., et al., 2017. Cenozoic Episodic Uplift and Kinematic Evolution between the Pamir and Southwestern Tien Shan. Tectonophysics, 712: 438–454. https://doi.org/10.1016/j.tecto.2017.06.009
    Liu, L. J., Hou, M. C., Chen, Y., et al., 2017. Late Cretaceous Granitoids in Karakorum, Northwest Tibet: petrogenesis and Tectonic Implications. International Geology Review, 59(2): 151–165. https://doi.org/10.1080/00206814.2016.1214087
    Liu, X. Q., Zhang, C. L., Hao, X. S., et al., 2020. Early Cretaceous Granitoids in the Southern Pamir: Implications for the Meso-Tethys Evolution of the Pamir Plateau. Lithos, 362: 105492. https://doi.org/10.1016/j.lithos.2020.105492
    Liu, Z., Zhu, D. C., Rezeau, H., et al., 2022. Late Cretaceous Transition from Calc-Alkaline to Alkaline Magmatism in the Eastern Anatolian Plateau: Implications for Microblock Collision Timing. Journal of Petrology, 63(12): egac119. https://doi.org/10.1093/petrology/egac119
    Lee, C. -T. A., Morton, D. M., 2015. High Silica granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23–31. https://doi.org/10.1016/j.epsl.2014.10.040
    Lu, Z. W., Guo, X. Y., Gao, R., et al., 2022. Active Construction of Southernmost Tibet Revealed by Deep Seismic Imaging. Nature Communications, 13: 3143. https://doi.org/10.1038/s41467-022-30887-3
    Ma, L., Wang, Q., Li, Z. X., et al., 2013. Early Late Cretaceous (ca. 93 Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese: Lithosphere-Asthenosphere Interaction during Slab Roll-back and an Insight into Early Late Cretaceous (ca. 100–80 Ma) Magmatic "Flare-up" in Southern Lhasa (Tibet). Lithos, 172/173: 17–30. https://doi.org/10.1016/j.lithos.2013.03.007
    Ma, X., Dan, W., Wang, J., et al., 2023. Cretaceous Magmatic Migration and Flare-up in Pamir-Karakoram. Lithos, 454/455: 107285. https://doi.org/10.1016/j.lithos.2023.107285
    Ma, X., 2024. Petrogenesis of Cretaceous Igneous Rocks in Central-South Pamir: From Continental Arc Magmatic Flare-up to Intraplate Small-Scale Magmatism: [Dissertation]. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English Abstract)
    Moghadam, H. S., Li, Q. L., Griffin, W. L., et al., 2022. Temporal Changes in Subduction- to Collision-Related Magmatism in the Neotethyan Orogen: The Southeast Iran Example. Earth-Science Reviews, 226: 103930. https://doi.org/10.1016/j.earscirev.2022.103930
    Negredo, A. M., Replumaz, A., Villaseñor, A., et al., 2007. Modeling the Evolution of Continental Subduction Processes in the Pamir-Hindu Kush Region. Earth and Planetary Science Letters, 259(1/2): 212–225. https://doi.org/10.1016/j.epsl.2007.04.043
    Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2016. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786
    Replumaz, A., Capitanio, F. A., Guillot, S., et al., 2014. The Coupling of Indian Subduction and Asian Continental Tectonics. Gondwana Research, 26(2): 608–626. https://doi.org/10.1016/j.gr.2014.04.003
    Robinson, A. C., Yin, A., Manning, C. E., et al., 2004. Tectonic Evolution of the Northeastern Pamir: Constraints from the Northern Portion of the Cenozoic Kongur Shan Extensional System, Western China. GSA Bulletin, 116(7/8): 953–973. https://doi.org/10.1130/B25375.1
    Robinson, A. C., Ducea, M., Lapen, T. J., 2012. Detrital Zircon and Isotopic Constraints on the Crustal Architecture and Tectonic Evolution of the Northeastern Pamir. Tectonics, 31(2): TC2016. https://doi.org/10.1029/2011TC003013
    Robinson, A. C., 2015. Mesozoic Tectonics of the Gondwanan Terranes of the Pamir Plateau. Journal of Asian Earth Sciences, 102: 170–179. https://doi.org/10.1016/j.jseaes.2014.09.012
    Rutte, D., Ratschbacher, L., Schneider, S., et al., 2017. Building the Pamir-Tibetan Plateau—Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir: 1. Geometry and Kinematics. Tectonics, 36(3): 342–384. https://doi.org/10.1002/2016TC004293
    Schwab, M., Ratschbacher, L., Siebel, W., et al., 2004. Assembly of the Pamirs: Age and Origin of Magmatic Belts from the Southern Tien Shan to the Southern Pamirs and Their Relation to Tibet. Tectonics, 23(4): TC4002. https://doi.org/10.1029/2003TC001583
    Sobel, E. R., Chen, J., Schoenbohm, L. M., et al., 2013. Oceanic-Style Subduction Controls Late Cenozoic Deformation of the Northern Pamir Orogen. Earth and Planetary Science Letters, 363: 204–218. https://doi.org/10.1016/j.epsl.2012.12.009
    Sun, J. M., Xiao, W. J., Windley, B. F., et al., 2016. Provenance Change of Sediment Input in the Northeastern Foreland of Pamir Related to Collision of the Indian Plate with the Kohistan-Ladakh Arc at around 47 Ma. Tectonics, 35(2): 315–338. https://doi.org/10.1002/2015TC003974
    Tang, G. J., Wyman, D. A., Dan, W., et al., 2023. Magma Migration and Surface Uplift in Pamir–Western Tibet Driven by Deep Lithospheric Dynamics. Geology, 51(9): 813–817. https://doi.org/10.1130/g51216.1
    Tang, G. J., Wyman, D. A., Dan, W., et al., 2024. Protracted and Progressive Crustal Melting during Continental Collision in the Pamir and Plateau Growth. Journal of Petrology, 65(4): egae024. https://doi.org/10.1093/petrology/egae024
    Tao, Z. L., Yin, J. Y., Fowler, M., et al., 2024a. Geodynamic Evolution of the Proto-Tethys Ocean in the West Kunlun Orogenic Belt, Northwest Tibetan Plateau: Implications from the Subarc Crust and Lithospheric Mantle Modification. Journal of Petrology, 65(10): egae097. https://doi.org/10.1093/petrology/egae097
    Tao, Z. L., Yin, J. Y., Spencer, C. J., et al., 2024b. Subduction Polarity Reversal Facilitated by Plate Coupling during Arc-Continent Collision: Evidence from the Western Kunlun Orogenic Belt, Northwest Tibetan Plateau. Geology, 52(4): 308–313. https://doi.org/10.1130/G51847.1
    Villarreal, D. P., Robinson, A. C., Chapman, J. B., et al., 2023. Early Cretaceous Displacement on the Tanymas Thrust Fault, Northern Pamir, Tajikistan, and Regional Tectonic Implications. Journal of Asian Earth Sciences: X, 9: 100147. https://doi.org/10.1016/j.jaesx.2023.100147
    Wang, J., Wang, Q., Ma, L., et al., 2023. Rapid Recycling of Subducted Sediments in the Subcontinental Lithospheric Mantle. Journal of Petrology, 64(8): egad056. https://doi.org/10.1093/petrology/egad056
    Wang, Y. M., Yin, J. Y., Thomson, S. N., et al., 2024. Meso–Cenozoic Exhumation of the Altai-Sayan Region: Constrained by Available Low-Temperature Thermochronology. Journal of Earth Science, 35(6): 2138–2143. https://doi.org/10.1007/s12583-024-2016-6
    White, W. M., 1993. 238U/204Pb in MORB and Open System Evolution of the Depleted Mantle. Earth and Planetary Science Letters, 115(1/2/3/4): 211–226. https://doi.org/10.1016/0012-821X(93)90223-V
    Xia, W. H., Yin, J. Y., He, Z. Y., et al., 2025. Meso–Cenozoic Tectonic and Thermal History of the Kuqa Depression, Tarim Basin: Insights from Low-Temperature Thermochronology and Vitrinite Reflectance. Journal of Earth Science. https://doi.org/10.1007/s12583-025-2027-y
    Xiao, W. Â. J., Windley, B. Â. F., Liu, D. Â. Y., et al., 2005. Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic–Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia. The Journal of Geology, 113(6): 687–705. https://doi.org/10.1086/449326
    Xue, S., Zhang, W. Z., Ling, M. X., et al., 2023. Large-Scale Cretaceous Adakitic Magmatism Induced by Water-Fluxed Melting of Continental Crust during the North China Craton Destruction. Journal of Petrology, 64(9): egad066. https://doi.org/10.1093/petrology/egad066
    Yang, F., Yin, J. Y., Xiao, W. J., et al., 2024. Early Cretaceous Continental Arc Magmatism in the Wakhan Corridor, South Pamir: Mantle Evolution and Geodynamic Processes during Flat Subduction of the Neo-Tethyan Oceanic Slab. GSA Bulletin, 136(9/10): 4175–4194. https://doi.org/10.1130/B37411.1
    Yang, F., Yin, J. Y., Yang, Z. M., et al., 2025. Petrogenesis of Late Miocene High Ba-Sr Granitoids in Eastern Pamir, Northwest Tibetan Plateau: Insights into Lithospheric Mantle Evolution and Geodynamic Processes during India-Asia Bidirectional Subduction. Journal of Petrology, 66(4): egaf026. https://doi.org/10.1093/petrology/egaf026
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    Yin, J. Y., Xiao, W. J., Sun, M., et al., 2020. Petrogenesis of Early Cambrian Granitoids in the Western Kunlun Orogenic Belt, Northwest Tibet: Insight into Early Stage Subduction of the Proto-Tethys Ocean. GSA Bulletin, 132(9/10): 2221–2240. https://doi.org/10.1130/B35408.1
    Yin, J. Y., Xiao, W. J., Wang, T., et al., 2024. Maturation from Oceanic Arcs to Continental Crust: Insights from Paleozoic Magmatism in West Junggar, NW China. Earth-Science Reviews, 253: 104795. https://doi.org/10.1016/j.earscirev.2024.104795
    Zanchi, A., Gaetani, M., 2011. The Geology of the Karakoram Range, Pakistan: The New 1 : 100 000 Geological Map of Central-Western Karakoram. Italian Journal of Geosciences, 130(2): 161–262. https://doi.org/10.3301/IJG.2011.09
    Zhang, C. L., Zou, H. B., Liu, X. Q., 2022. Cretaceous Basalt-Andesite Sequence in the Southern Pamir: Arc-Back-Arc Architecture at the Pamir Plateau Genetically Related to the Northward Flat Subductions of the Neo-Tethys Ocean. Lithos, 422/423: 106747. https://doi.org/10.1016/j.lithos.2022.106747
    Zhang, H. R., Yang, T. N., Hou, Z. Q., et al., 2020. Magmatic Expression of Tectonic Transition from Oceanic Subduction to Continental Collision: Insights from the Middle Triassic Rhyolites of the North Qiangtang Block. Gondwana Research, 87: 67–82. https://doi.org/10.1016/j.gr.2020.05.012
    Zhao, J. M., Yuan, X. H., Liu, H. B., et al., 2010. The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11229–11233. https://doi.org/10.1073/pnas.1001921107
    Zhao, L. M., Li, Y. L., Xiang, H., et al., 2023. A Devonian Shoshonitic Appinite-Granite Suite in the North Qinling Orogenic Belt: Implications for Partial Melting of a Water-Fluxed Lithospheric Mantle in an Extensional Setting. Journal of Petrology, 64(6): egad040. https://doi.org/10.1093/petrology/egad040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(68) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return