Cabra, A., Wang, X., Horányi, M., 2025. Laboratory Study of Dust Mobilization on Airless Planetary Bodies in the Solar Wind Plasma. The Planetary Science Journal, 6(2): 46. https://doi.org/10.3847/psj/adb02c |
Craven, P., Vaughn, J., Schneider, T., et al., 2009. MSFC Lunar Environments Test System (LETS) System Development. Third Lunar Regolith Simulant Workshop, 17 March, Huntsville. No. M09-0391. https://ntrs.nasa.gov/api/citations/20090025947/downloads/20090025947.pdf |
Criswell, D. R., 1973. Horizon-Glow and the Motion of Lunar Dust. In: Grard, R. J. L., ed., Photon and Particle Interactions with Surfaces in Space: Proceedings of the 6th Eslab Symposium, September 26–29, Noordwijk. Springer, Dordrecht. 545–556 |
Denevi, B. W., Noble, S. K., Christoffersen, R., et al., 2023. Space Weathering at the Moon. Reviews in Mineralogy and Geochemistry, 89(1): 611–650. https://doi.org/10.2138/rmg.2023.89.14 |
Gaier, J. R., Siamidis, J., Larkin, E. M., 2010. Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar. 25th Space Simulation Conference, October 20–23, 2010, Annapolis. No. NASA/TM-2010-216828. https://permanent.fdlp.gov/gpo6964/20100039312_2010043258.pdf |
Gan, H., Liu, J. H., Zhang, X. P., et al., 2025. Electrostatic Transport Characteristics of Olivine Particles under Electron Irradiation in Vacuum. The Astrophysical Journal, 978(1): 109–119. https://doi.org/10.3847/1538-4357/ad97be |
Gerdts, S., Jimenez, N., Dunlap, P. H., Jr, 2022. Lunar Simulant Deposition Technique for Dust Tolerance Studies, January 1, Ohio. No. E-20002. https://ntrs.nasa.gov/api/citations/20210024128/downloads/TM-20210024128.pdf |
Hintze, P. E., Buhler, C. R., Schuerger, A. C., et al., 2010. Alteration of Five Organic Compounds by Glow Discharge Plasma and UV Light under Simulated Mars Conditions. Icarus, 208(2): 749–757. https://doi.org/10.1016/j.icarus.2010.03.015 |
Immer, C., Lane, J., Metzger, P., et al., 2011. Apollo Video Photogrammetry Estimation of Plume Impingement Effects. Icarus, 214(1): 46–52. https://doi.org/10.1016/j.icarus.2011.04.018 |
Jin, H., Li, X. Y., Wei, G. F., et al., 2024. Properties of Lunar Dust and Their Migration on the Moon. Space: Science and Technology, 4: 142. https://doi.org/10.34133/space.0142 |
Mateo-Marti, E., 2014. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology. Challenges, 5(2): 213–223. https://doi.org/10.3390/challe5020213 |
Morris, A. B., Goldstein, D. B., Varghese, P. L., et al., 2011. Plume Impingement on a Dusty Lunar Surface. 27th International Symposium on Rarefied Gas Dynamics, Pacific Grove, California. 1333(1): 1187–1192. https://doi.org/10.1063/1.3562805 |
Pagán Muñoz, J. H., Wang, X., Horányi, M., et al., 2024. Charging and Mobilization of Dust Particles on a Surface in Plasma. Physical Review Letters, 133(11): 115301. https://doi.org/10.1103/physrevlett.133.115301 |
Roman, K., Lavoie, J., Murzionak, P., et al., 2017. DTVAC Dusty Planetary Thermo-VACuum Simulator. 47th International Conference on Environmental Systems, July 16–20, 2017, Charleston. ICES-2017-235. https://ttu-ir.tdl.org/server/api/core/bitstreams/1e34b8fb-f8dd-4fa7-b031-d489d0387d2f/content |
Smith, M., Craig, D., Herrmann, N., et al., 2020. The Artemis Program: An Overview of NASA's Activities to Return Humans to the Moon. 2020 IEEE Aerospace Conference. March 7–14, 2020, Montana. 1–10. https://doi.org/10.1109/aero47225.2020.9172323 |
Sorokin, E. G., Yakovlev, O. I., Slyuta, E. N., et al., 2020. Experimental Modeling of a Micrometeorite Impact on the Moon. Geochemistry International, 58(2): 113–127. https://doi.org/10.1134/S0016702920020111 |
Stubbs, T. J., Farrell, W. M., Halekas, J. S., et al., 2014. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation. Planetary and Space Science, 90: 10–27. https://doi.org/10.1016/j.pss.2013.07.008 |
Wang, H., Phillips III, J. R., Dove, A. R., et al., 2022. Investigating Particle-Particle Electrostatic Effects on Charged Lunar Dust Transport via Discrete Element Modeling. Advances in Space Research, 70(10): 3231–3248. https://doi.org/10.1016/j.asr.2022.08.080 |
Wang, J. W., Gong, J., Xu, M. L., et al., 2024. Research and Development Analysis of Lunar Environment Simulation Facility. Vacuum, 61(5): 51–56. https://doi.org/10.13385/j.cnki.vacuum.2024.05.07 (in Chinese with English Abstract) |
Wei, X., 2022. Research on Lunar Multi-Source Irradiation Charging Environment Simulation Technology: [Dissertation]. Harbin Institute of Technology, Harbin (in Chinese with English Abstract) |
Woerner, J., Foing, B., 2016. The "Moon Village" Concept and Initiative. In: LPI Editorial Board, eds., Annual Meeting of the Lunar Exploration Analysis Group, November 1–3, 2016, Columbia. 1960: 5084. https://www.hou.usra.edu/meetings/leag2016/pdf/5084.pdf |
Zhang, H. Y., Li, S. X., Wang, Y., et al., 2024. Nozzle plume erosion property on lunar dust in Chang'E-5 mission. Journal of Beijing University of Aeronautics and Astronautics, 50(4): 1251–1261. https://doi.org/10.13700/j.bh.1001-5965.2022.0447 (in Chinese with English Abstract) |
Zhou, C., Yu, Y., Gao, Y. Y., et al., 2024. Analysis and Implications of ESA's Moon Village Construction Program. Journal of Civil Engineering and Management, 41(2): 1–9. https://doi.org/10.13579/j.cnki.2095-0985.2024.20230544 (in Chinese with English Abstract) |