| Citation: | George Chelnokov, Li Zhang, Vasilii Lavrushin, Xiangxian Ma, Yuanyuan Shao, Yuxin Guo, Zhongping Li, Chunhui Cao, Huayun Tang, Guodong Zheng. Geochemical Peculiarities and Genesis of Mud Volcanic Fluids Originated from Marine and Freshwater Strata: Insights from the North Tian Shan and the North Caucasus Mud Volcanoes. Journal of Earth Science, 2025, 36(5): 2208-2223. doi: 10.1007/s12583-025-0211-8 |
The phenomenon of mud volcanism has a connection with the processes of hydrocarbon generation. However, the genesis of sediments is not often taken into consideration. The study of mud volcanoes in the West Kuban marginal marine basin and the Junggar freshwater basin revealed significant isotope-geochemical differences due to various types of sedimentation. The waters from both basins exhibit three principal geochemical facies: Na-HCO3, Na-Cl-HCO3, and Na-Cl, of which the latter type of water is the dominant. The analysis of genetic coefficients (Cl/Br, Na/Br, and B/Cl) allowed us to distinguish different pathways of mud volcanic water evolution: evaporite dissolution, formation (sedimentation) waters, and waters formed by active water-rock interaction. Through statistical research, we were able to determine that noticeable variations in the behavior of chemical elements in waters from different areas can reflect discrepancies in the geological environment and the evolutionary stage of the diagenetic water transformation. Using thermodynamic modeling, the main directions of mass transfer were shown. It was established that the waters of the Junggar Basin were at a relatively early stage of evolution and had reached equilibrium only with carbonates, while in the formation waters of the West Kuban Basin, element concentrations were also controlled by silicate minerals. The correlations between δ18O and δ2H values and saturation indices of halides, aluminosilicates, sulfates, and borates confirm the enrichment of water with heavy isotopes during interactions with rocks without evaporation or thermal water partition. These reactions are characterized by clay dehydration and water enrichment with 18O and B. The data obtained made it possible to clarify the depths of formation of mud-volcanic fluids and their possible stratigraphic sources.
| Abu-Qubu, J., Khzahee, M. A., 2019. The influence of the Dead Sea Water Decline on the Concentration Changes of Lithium and Strontium Trace Elements. International Journal of Innovative Science and Research Technology, 4(1): 337–347 |
| Avouac, J. P., Tapponnier, P., Bai, M., et al., 1993. Active Thrusting and Folding along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan. Journal of Geophysical Research: Solid Earth, 98(B4): 6755–6804. https://doi.org/10.1029/92jb01963 |
| Battaglia, S., Pennisi, M., 2016. Structural Boron as Factor Controlling Illite Crystallinity in a Mud Volcano Environment (Northern Apennine, Italy). Chemical Geology, 444: 120–127. https://doi.org/10.1016/j.chemgeo.2016.10.017 |
| Belkhiri, L., Boudoukha, A., Mouni, L., 2011. A Multivariate Statistical Analysis of Groundwater Chemistry Data. International Journal of Environmental Research, 5: 537–544 |
| Boschetti, T., 2011. Application of Brine Differentiation and Langelier–Ludwig Plots to Fresh-to-Brine Waters from Sedimentary basins: Diagnostic Potentials and Limits. Journal of Geochemical Exploration, 108(2): 126–130. https://doi.org/10.1016/j.gexplo.2 010.12.002 doi: 10.1016/j.gexplo.2010.12.002 |
| Boschetti, T., Angulo, B., Cabrera, F., et al., 2016. Hydrogeochemical Characterization of Oilfield Waters from Southeast Maracaibo Basin (Venezuela): Diagenetic Effects on Chemical and Isotopic Composition. Marine and Petroleum Geology, 73: 228–248. https://doi.org/10.1016/j.marpetgeo.2016.02.020 |
| Boschetti, T., González-Hernández, P., Hernández-Díaz, R., et al., 2015a. Seawater Intrusion in the Guanahacabibes Peninsula (Pinar Del Rio Province, Western Cuba): Effects on Karst Development and Water Isotope Composition. Environmental Earth Sciences, 73(9): 5703–5719. https://doi.org/10.1007/s126 65-014-3825-1 doi: 10.1007/s12665-014-3825-1 |
| Boschetti, T., Toscani, L., Salvioli Mariani, E., 2015b. Boron Isotope Geochemistry of Na-Bicarbonate, Na-Chloride, and Ca-Chloride Waters from the Northern Apennine Foredeep Basin: other Pieces of the Sedimentary Basin Puzzle. Geofluids, 15(4): 546–562. https://doi.org/10.1111/gfl.12124 |
| Chelnokov, G., Lavrushin, V., Ermakov, A., et al., 2024. Toxic Element Contamination Sources in the Surface and Groundwater of the Elbrus Region: Geochemistry and Health Risks. Water, 16(5): 701. https://doi.org/10.3390/w16050701 |
| Chen, J. P., Deng, C. P., Wang, X. L., et al., 2017. Formation Mechanism of Condensates, Waxy and Heavy Oils in the Southern Margin of Junggar Basin, NW China. Science China Earth Sciences, 60(5): 972–991. https://doi.org/10.1007/s11430-016-9027-3 |
| Chen, Z., Li, Y., Liu, Z. F., et al., 2019. CH4 and CO2 Emissions from Mud Volcanoes on the Southern Margin of the Junggar Basin, NW China: Origin, Output, and Relation to Regional Tectonics. Journal of Geophysical Research: Solid Earth, 124(5): 5030–5044. https://doi.org/10.1029/2018jb016822 |
| Christ, C. L., Harder, H., 1978. Handbook of Geochemistry Chapter 5 – Boron, Springer-Verlag, Berlin, Heidelberg |
| Clayton, R. N., Friedman, I., Graf, D. L., et al., 1966. The Origin of Saline Formation Waters: 1. Isotopic Composition. Journal of Geophysical Research (1896–1977), 71(16): 3869–3882. https://doi.org/10.1029/jz071i016p03869 |
| Collins, A. G., 1975. Geochemistry of Oil Field Waters. Developments in Petroleum Science, Elsevier, Amsterdam |
| Craig, H., 1963. The Isotopic Composition of Water and Carbon in Geothermal Areas. In: Tongiorgii, E., ed., Nuclear Geology of Geothermal Areas. Consiglio Nazionale Delle Ricerche (CNR), Laboratorio Di Geologia Nucleare, Pisa |
| Dählmann, A., de Lange, G. J., 2003. Fluid-Sediment Interactions at Eastern Mediterranean Mud Volcanoes: A Stable Isotope Study from ODP Leg 160. Earth and Planetary Science Letters, 212(3/4): 377–391. https://doi.org/10.1016/s0012-821x(03)00227-9 |
| Dai, J. X., Wu, X. Q., Ni, Y. Y., et al., 2012. Geochemical Characteristics of Natural Gas from Mud Volcanoes in the Southern Junggar Basin. Science China Earth Sciences, 55(3): 355–367. https://doi.org/10.1007/s11430-012-4363-x |
| Dimitrov, L. I., 2002. Mud Volcanoes—The Most Important Pathway for Degassing Deeply Buried Sediments. Earth-Science Reviews, 59(1/2/3/4): 49–76. https://doi.org/10.1016/S0012-825 2(02)00069-7 doi: 10.1016/S0012-8252(02)00069-7 |
| Eggenkamp, H., 2014. The Geochemistry of Stable Chlorine and Bromine Isotopes. Springer-Verlag, Berlin |
| Ershov, V. V., Sobisevich, A. L., Puzich, I. N., 2015. Deep Structure of Taman Mud Volcanoes According to the Data of Natural Research and Mathematical Modeling. Geophysics Research, 16(2): 69–76 (in Russian) |
| Eslamian, S., 2014. Handbook of Engineering Hydrology (Three-Volume Set) (1st ed. ). CRC Press, Boca Raton |
| Fletcher, P. J., van Staden, J. F., 2003. Determination of Carbonate and Hydrogencarbonate by Titration Using Sequential Injection Analysis. Analytica Chimica Acta, 485(2): 187–194. https://doi.org/10.1016/S0003-2670(03)00417-3 |
| Garrels, R. M., MacKenze, F. T., 1972. Sedimentary Cycling in Relation to the History of the Continents and Oceans. In: Robertson, E. C., ed., The Nature of the Solid Earth. McGraw-Hill Book Co., New York |
| Graf, D. L., Freedman, I., Meents, W. F., 1966. The Origin of Saline Formation Water Ⅱ. Isotopic Fractionation by Shale Micropore Systems. Ill State Geol Surv Circ, 999: 32 |
| Hardie, L. A., 1967. The Gypsum-Anhydrite Equilibrium at One Atmosphere Pressure. American Mineralogist, 52: 171–200 |
| Hensen, C., Scholz, F., Nuzzo, M., et al., 2015. Strike-Slip Faults Mediate the Rise of Crustal-Derived Fluids and Mud Volcanism in the Deep Sea. Geology, 43(4): 339–342. https://doi.org/10.1 130/g36359.1 doi: 10.1130/g36359.1 |
| Hitchon, B., Friedman, I., 1969. Geochemistry and Origin of Formation Waters in the Western Canada Sedimentary Basin—Ⅰ. Stable Isotopes of Hydrogen and Oxygen. Geochimica et Cosmochimica Acta, 33(11): 1321–1349. https://doi.org/10.1016/0016-7037(69)90178-1 |
| Hüpers, A., Kopf, A. J., 2012. Effect of Smectite Dehydration on Pore Water Geochemistry in the Shallow Subduction Zone: An Experimental Approach. Geochemistry, Geophysics, Geosystems, 13(10): Q0AD26. https://doi.org/10.1029/2012gc004212 |
| Hussain, S. A., Han, F. Q., Ma, Z., et al., 2021. Origin and Evolution of Eocene Rock Salts in Pakistan and Implications for Paleoclimate Studies: Insights from Chemistry and Cl Stable Isotopes. Frontiers in Earth Science, 9: 644485. https://doi.org/10.3389/feart.2021.644485 |
| Jacobson, A. D., Wasserburg, G. J., 2005. Anhydrite and the Sr Isotope Evolution of Groundwater in a Carbonate Aquifer. Chemical Geology, 214(3/4): 331–350. https://doi.org/10.1016/j.chemgeo.2004.10.006 |
| Ji, L. M., Zhang, M. Z., Ma, X. X., et al., 2018. Characteristics of Mixed Sporopollen Assemblage from Sediments of Dushanzi Mud Volcano in Southern Junggar Basin and Indication to the Source of Mud and Debris Ejecta. Marine and Petroleum Geology, 89: 194–201. https://doi.org/10.1016/j.marpetgeo.20 17.02.029 doi: 10.1016/j.marpetgeo.2017.02.029 |
| Karandashev, V. K., Leikin, A. Y., Khvostikov, V. A., et al., 2016. Water Analysis by Inductively Coupled Plasma Mass Spectrometry. Inorganic Materials, 52(14): 1391–1404. https://doi.org/10.1134/s0020168516140053 |
| Kharaka, Y. K., Berry, F. A. F., 1974. The Influence of Geological Membranes on the Geochemistry of Subsurface Waters from Miocene Sediments at Kettleman North Dome in California. Water Resources Research, 10(2): 313–327. https://doi.org/10.1 029/wr010i002p00313 doi: 10.1029/wr010i002p00313 |
| Kharaka, Y. K., Berry, F. A. P., 1973. Simultaneous Flow of Water and Solutes through Geological Membranes—Ⅰ. Experimental Investigation. Geochimica et Cosmochimica Acta, 37(12): 2577–2603. https://doi.org/10.1016/0016-7037(73)90267-6 |
|
Kharaka, Y. K., Mariner, R. H., 1989. Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins. Thermal History of Sedimentary Basins. Springer New York, New York. |
| Kharaka, Y. K., Thordsen, J. J., 1992. Stable Isotope Geochemistry and Origin of Water in Sedimentary Basins. In: Clauer, N., Chaudhuri, S., eds., Isotope Signatures and Sedimentary Records. Springer-Verlag, Berlin |
| Kharaka, Y., Hitchon, B., Hanor, J. S., 2023. Groundwater and Petroleum. The Groundwater Project, Ontario |
| Kholodov, V. N., 2002. Mud Volcanoes, Their Distribution Regularities and Genesis: Communication 1. Mud Volcanic Provinces and Morphology of Mud Volcanoes. Lithology and Mineral Resources, 37(3): 197–209. https://doi.org/10.1023/a:1015425612749 |
| Kikvadze, O. E., Lavrushin, V. Y., Pokrovskii, B. G., et al., 2014. Isotope and Chemical Composition of Gases from Mud Volcanoes in the Taman Peninsula and Problem of Their Genesis. Lithology and Mineral Resources, 49(6): 491–504. https://doi.org/10.1134/s0024490214060066 |
| Kokh, S. N., Shnyukov, Y. F., Sokol, E. V., et al., 2015. Heavy Carbon Travertine Related to Methane generation: A Case Study of the Big Tarkhan Cold Spring, Kerch Peninsula, Crimea. Sedimentary Geology, 325: 26–40. https://doi.org/10.1016/j.sed geo.2015.05.005 doi: 10.1016/j.sedgeo.2015.05.005 |
| Kopf, A., 2002. Significance of Mud Volcanism. Reviews of Geophysics, 40(1): 1–52 |
| Kopf, A., Deyhle, A., Lavrushin, V. Y., et al., 2003. Isotopic Evidence (He, B, C) for Deep Fluid and Mud Mobilization from Mud Volcanoes in the Caucasus Continental Collision Zone. International Journal of Earth Sciences, 92(3): 407–425. https://doi.org/10.1007/s00531-003-0326-y |
| Korsakov, S. G., Beluzhenko, E. V., Chernykh, V. I., et al. 2021. The 1 : 200 000 State Geological Map of the Russian Federation, 2nd ed., Ser. Caucasus. Explain Note. VNIGI, Moscow |
| Land, L. S., Prezbindowski, D. R., 1981. The Origin and Evolution of Saline Formation Water, Lower Cretaceous Carbonates, South-Central Texas, U. S. A. Developments in Water Science, 16: 51–74. https://doi.org/10.1016/S0167-5648(08)70595-1 |
| Lavrushin, V. Y., 2012. Subsurface Fluids of the Greater Caucasus and Its Surroundings. GEOS, Moscow. 348 |
| Lavrushin, V. Y., Aydarkozhina, A. S., Sokol, E. V., et al., 2022. Mud Volcanic Fluids of the Kerch-Taman Region: Geochemical Reconstructions and Regional Trends: Communication 2. Genesis of Mud Volcanic Gases and Regional Geochemical Trends. Lithology and Mineral Resources, 57(1): 1–24. https://doi.org/10.1134/s0024490222010059 |
| Lavrushin, V. Y., Aydarkozhina, A. S., Sokol, E. V., et al., 2022. Mud Volcanic Fluids of the Kerch-Taman Region: Geochemical Reconstructions and Regional Trends: Communication 2. Genesis of Mud Volcanic Gases and Regional Geochemical Trends. Lithology and Mineral Resources, 57(1): 7111. https://doi.org/10.1134/s0024490222010059 |
| Lavrushin, V. Y., Kopf, A., Deyhle, A., et al., 2003. Formation of Mud-Volcanic Fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from Boron Isotopes. Lithology and Mineral Resources, 38(2): 120–153. https://doi.org/10.1023/a:1023452 025440 doi: 10.1023/a:1023452025440 |
| Liu, Y. M., Lu, X. S., Zhao, M. J., et al., 2022. Hydrocarbon Generation and Accumulation in the South Junggar Basin, Northwest China: Insights from Basin Modeling. Frontiers in Earth Science, 10: 920011. https://doi.org/10.3389/feart.2022.9 20011 doi: 10.3389/feart.2022.920011 |
| Ma, X. X., Ma, Y., Zhang, L., et al., 2022. Seasonal Variations of Geofluids from Mud Volcano Systems in the Southern Junggar Basin, NW China. Science of the Total Environment, 844: 157164. https://doi.org/10.1016/j.scitotenv.2022.157164 |
|
Martinelli, G., Dadomo, A., 2005. Mud Volcano Monitoring and Seismic Events. Mud Volcanoes, Geodynamics and Seismicity. Springer-Verlag, Berlin/Heidelberg. |
| Nakada, R., Takahashi, Y., Tsunogai, U., et al., 2011. A Geochemical Study on Mud Volcanoes in the Junggar Basin, China. Applied Geochemistry, 26(7): 1065–1076. https://doi.org/10.1016/j.apge ochem.2011.03.011 doi: 10.1016/j.apgeochem.2011.03.011 |
| Nordstrom, D. K., Ball, J. W., 1989. Mineral Saturation States in Natural Waters and Their Sensitivity to Thermodynamic and Analytical Errors. Science Geological Bulletin, 42: 269–280 |
| Parkhurst, D. L., Appelo, C. A. J., 1999. A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. User's Guide to PHREEQC. USGS, Denver |
| Pilipenko, G. F., 1974. Hydrotherms of the Uzon Caldera. In: Naboko S. I., ed., Hydrothermal Mineral-Forming Solutions of Areas of Active Volcanism. Nauka, Novosibirsk |
| Popkov, V. I., Popkov, I. V., 2017. Structural and Tectonic Prerequisites for Oil and Gas Potential and Possible Types of Oil and Gas Traps in Fold-Orogenic Zones: A Case Study of the Northwest Caucasus. Petroleum Geology-Theoretical and Applied Studies, 12(2): 606–607 (in Russian) |
| Qiu, N. S., Zhang, Z. H., Xu, E. S., 2008. Geothermal Regime and Jurassic Source Rock Maturity of the Junggar Basin, Northwest China. Journal of Asian Earth Sciences, 31(4/5/6): 464–478. https://doi.org/10.1016/j.jseaes.2007.08.001 |
| Scholz, F., Hensen, C., de Lange, G. J., et al., 2010. Lithium Isotope Geochemistry of Marine Pore Waters—Insights from Cold Seep Fluids. Geochimica et Cosmochimica Acta, 74(12): 3459–3475. https://doi.org/10.1016/j.gca.2010.03.026 |
| Shnyukov, E. F., Sobolevskii, Y. V., Gnatenko, G. I., et al., 1986. Mud Volcanoes in the Kerch-Taman Region: Atlas. Nauk Dumka, Kiev. 152 |
| Shnyukov, E. F., Sheremet'Ev, V. M., Maslakov, N. A., et al., 2006. Mud Volcanoes of Kerch-Taman Region. Glavmedia, Krasnodar |
| Shnyukov, Y. F., Lebedev, Y. S., 1971. Mud Volcanism, In: Shniukov Y. F., ed., Mud Volcanism and Ore Formation, Naukova Dumka, Kiev (in Russian) |
| Sokol, E. V., Kokh, S. N., Kozmenko, O. A., et al., 2019. Boron in an Onshore Mud Volcanic Environment: Case Study from the Kerch Peninsula, the Caucasus Continental Collision Zone. Chemical Geology, 525: 58–81. https://doi.org/10.1016/j.chemg eo.2019.0 7.018 doi: 10.1016/j.chemgeo.2019.07.018 |
| Sun, P., Bian, B., Yuan, Y., et al., 2015. Natural Gas in Southern Junggar Basin in Northwest China: Geochemistry and Origin. Geochimica, 44(3): 275–288 (in Chinese with English Abstract) |
| Walter, L. M., Stueber, A. M., Huston, T. J., 1990. Br-Cl-Na Systematics in Illinois Basin Fluids: Constraints on Fluid Origin and Evolution. Geol., 18: 315–318. https://doi.org/10.1130/0091-7613(1990)018<0315:bcnsii>2.3.co;2 doi: 10.1130/0091-7613(1990)018<0315:bcnsii>2.3.co;2 |
| Wan, Z. F., Shi, Q. H., Guo, F., et al., 2013. Gases in Southern Junggar Basin Mud Volcanoes: Chemical Composition, Stable Carbon Isotopes, and Gas Origin. Journal of Natural Gas Science and Engineering, 14: 108–115. https://doi.org/10.1016/j.jngse.2013.06.006 |
| Wang, D., Li, M. W., Li, M., et al., 1997. A Preliminary Study on Eruption of the Mud Volcano in Dushanzi, Xinjiang. Seismology and Geology, 19(1): 14–16 (in Chinese with English Abstract) |
| Wang, Y. Y., Chen, J. F., Shen, W. B., et al., 2021. Anomalies of Gas Molecular and Isotopic Compositions of Terrestrial Mud Volcanoes Caused by Post-Genetic Processes—A Case from the Mud Volcanoes in the Junggar Basin, Northwest China. Journal of Petroleum Science and Engineering, 196: 107698. https://doi.org/10.1016/j.petrol.2020.107698 |
| Weaver, C. E., Pollard, L. D., 1973. The Chemistry of Clay Minerals. Elsevier Scientific Publishing, Amsterdam, London, New York |
| White, D. E., Waring, G. A., 1963. Volcanic Emanations. U. S. Government Printing Office, Washington D. C. |
| Yakubov, A. A., Grigoryants, B. V., Aliev, A. D., et al., 1980. Mud Volcanism in the Soviet Union and Its Relation to Petroleum Potential. ELM, Baku |
| Zen, E., 1962. Phase-Equilibrium Studies of the System CaSO4-NaCl-H2O at Low Temperatures and Atmosphere Pressure. Geological Society of America Special Papers, 63: 306 |
| Zheng, G. D., Fu, B. H., Takahashi, Y., et al., 2010. Chemical Speciation of Redox Sensitive Elements during Hydrocarbon Leaching in the Junggar Basin, Northwest China. Journal of Asian Earth Sciences, 39(6): 713–723. https://doi.org/10.1016/j.jseaes.2010.05.006 |
| Zuddas, P., 2010. Water-Rock Interaction Processes Seen through Thermodynamics. Elements, 6(5): 305–308.https://doi.org/10.2 113/gselements.6.5.30 doi: 10.2113/gselements.6.5.30 |