Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Jiaqiang Zhang, Zhen Qiu, Weiliang Kong, Wenjiao Xiao. Late Ordovician Volcanic Ash Deposition in the Southwestern Yangtze Shelf: Evidence for Arc Magmatism in the Wuyi-Yunkai Orogen. Journal of Earth Science, 2025, 36(6): 2426-2436. doi: 10.1007/s12583-025-0239-9
Citation: Jiaqiang Zhang, Zhen Qiu, Weiliang Kong, Wenjiao Xiao. Late Ordovician Volcanic Ash Deposition in the Southwestern Yangtze Shelf: Evidence for Arc Magmatism in the Wuyi-Yunkai Orogen. Journal of Earth Science, 2025, 36(6): 2426-2436. doi: 10.1007/s12583-025-0239-9

Late Ordovician Volcanic Ash Deposition in the Southwestern Yangtze Shelf: Evidence for Arc Magmatism in the Wuyi-Yunkai Orogen

doi: 10.1007/s12583-025-0239-9
More Information
  • The Ordovician-Silurian transition was marked by extensive volcanic activity globally. In South China, intensive volcanism was documented by abundant ash layers in strata, but the origins and tectonic settings of these ashes remain controversial. This study presents the stratigraphic distribution of volcanic ash layers, zircon trace element and Hf isotope data from the Wanhe Section in the southwestern Yangtze Shelf, providing insights into the tectonic setting and the origin of the parent magmas. The results suggest that volcanic ashes in the southwestern Yangtze Shelf primarily originated from arc magmatism in the Wuyi-Yunkai Orogen, with a mixed source from mantle and crust. The findings corroborate the hypothesis that the Late Ordovician–Silurian Wuyi-Yunkai Orogen in South China represents a collisional orogenic belt.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7
    Bond, D. P. G., Grasby, S. E., 2020. Late Ordovician Mass Extinction Caused by Volcanism, Warming, and Anoxia, Not Cooling and Glaciation. Geology, 48(8): 777–781. https://doi.org/10.1130/g47377.1
    Buggisch, W., Joachimski, M. M., Lehnert, O., et al., 2010. Did Intense Volcanism Trigger the First Late Ordovician Icehouse? Geology, 38(4): 327–330. https://doi.org/10.1130/g30577.1
    Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173–194. https://doi.org/10.1016/j.earscirev.2017.06.001
    Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567–1574. https://doi.org/10.1039/b206707b
    Du, X. B., Jia, J. X., Zhao, K., et al., 2021. Was the Volcanism during the Ordovician-Silurian Transition in South China Actually Global in Extent? Evidence from the Distribution of Volcanic Ash Beds in Black Shales. Marine and Petroleum Geology, 123: 104721. https://doi.org/10.1016/j.marpetgeo.2020.104721
    Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643. https://doi.org/10.1130/g23603a.1
    Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3
    Huang, C., Wang, H., Yang, J. -H., et al., 2020. SA01—A Proposed Zircon Reference Material for Microbeam U-Pb Age and Hf-O Isotopic Determination. Geostandards and Geoanalytical Research, 44(1): 103–123. https://doi.org/10.1111/ggr.12307
    Huang, C., Wang, H., Yang, J. H., et al., 2021. Characterization of the Potential Reference Material SA02 for Micro-Beam U-Pb Geochronology and Hf-O Isotopic Composition Analysis of Zircon. Journal of Analytical Atomic Spectrometry, 36(2): 368–374. https://doi.org/10.1039/d0ja00409j
    Huff, W. D., Bergström, S. M., Kolata, D. R., 1992. Gigantic Ordovician Volcanic Ash Fall in North America and Europe: Biological, Tectonomagmatic, and Event-Stratigraphic Significance. Geology, 20(10): 875. https://doi.org/10.1130/0091-7613(1992)0200875:govafi>2.3.co;2 doi: 10.1130/0091-7613(1992)0200875:govafi>2.3.co;2
    Huff, W. D., 2008. Ordovician K-Bentonites: Issues in Interpreting and Correlating Ancient Tephras. Quaternary International, 178(1): 276–287. https://doi.org/10.1016/j.quaint.2007.04.007
    Huff, W. D., Bergström, S. M., Kolata, D. R., 2010. Ordovician Explosive Volcanism. The Ordovician Earth System, Geological Society of America, 466: 13–28. https://doi.org/10.1130/2010.2466(02)
    Jia, J. X., Du, X. B., Zhao, K., et al., 2022. Sources of K-Bentonites across the Ordovician-Silurian Transition in South China: Implications for Tectonic Activities on the Northern and Southern Margins of the South China Block. Marine and Petroleum Geology, 139: 105599. https://doi.org/10.1016/j.marpetgeo.2022.105599
    Lei, C. Y., Wang, L. Q., Tang, J. X., et al., 2023. Origin of Qushenla Formation Volcanic Rocks in the Nawucuo Area, Northern Tibet, and Constraints on the Subduction Polarity of the Bangong-Nujiang Tethys Ocean. Journal of Earth Science, 34(2): 467–486. https://doi.org/10.1007/s12583-020-1076-5
    Li, C., Tong, L. X., Liu, Z., et al., 2022. P-T Paths and U-Pb Ages of Pelitic and Semi-Pelitic Granulites in the Yunkai Massif and Implication for the Tectonic Evolution of the Wuyi-Yunkai Orogen, South China. Journal of Asian Earth Sciences, 224: 105010. https://doi.org/10.1016/j.jseaes.2021.105010
    Li, W. J., 2021. Darriwilian to Katian (Ordovician) Depositional Characteristics and Their Implications for Geological Events in South China: [Dissertation]. University of Chinese Academy of Sciences, Beijing (in Chinese with English Abstract)
    Li, Z. C., Pei, X. Z., Wei, L. Y., et al., 2024. Detrital Zircon Geochronology of Early Triassic Strata in the West Qinling Orogen: Implications for the Tectonic Evolution of the Paleo-Tethyan Ocean. Journal of Earth Science, 35(4): 1087–1106. https://doi.org/10.1007/s12583-022-1714-1
    Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5/6): 772–793. https://doi.org/10.1130/b30021.1
    Li, Z. C., Pei, X. Z., Pei, L., et al., 2025. Late Ordovician Bentonites from the Southern Ordos Basin: Response to the Subduction of the Proto-Tethys Ocean. Geological Journal, 60(1): 104–132. https://doi.org/10.1002/gj.5077
    Liang, C., Xie, H. R., Wu, J., et al., 2025. Volcanic Activity Driving Rapid Organic Carbon Burial during the Ordovician–Silurian Transition. Geological Society of America Bulletin, 137(5/6): 1909–1926. https://doi.org/10.1130/b37946.1
    Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian-Style Multi-Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319–322. https://doi.org/10.1130/g39806.1
    Lin, S. F., Wang, L. J., Xiao, W. J., et al., 2024. The Early Paleozoic Wuyi-Yunkai Orogeny in South China: a Collisional Orogeny with a Major Lag in Time between Onset of Collision and Peak Metamorphism in Subducted Continental Crust. Geological Society, London, Special Publications, 542(1): 619–641. https://doi.org/10.1144/sp542-2023-6
    Ling, M. X., Zhan, R. B., Wang, G. X., et al., 2019. An Extremely Brief End Ordovician Mass Extinction Linked to Abrupt Onset of Glaciation. Solid Earth Sciences, 4(4): 190–198. https://doi.org/10.1016/j.sesci.2019.11.001
    Liu, S. F., Peng, S. B., Kusky, T., et al., 2018. Origin and Tectonic Implications of an Early Paleozoic (460–440 Ma) Subduction-Accretion Shear Zone in the Northwestern Yunkai Domain, South China. Lithos, 322: 104–128. https://doi.org/10.1016/j.lithos.2018.10.006
    Liu, W., Liu, Y., Zeng, Z. X., et al., 2020. K-Bentonites in Ordovician–Silurian Transition from South China: Implications for Tectonic Evolution in the Northern Margin of Gondwana. Journal of the Geological Society, 177(6): 1245–1260. https://doi.org/10.1144/jgs2020-049
    Longman, J., Mills, B. J. W., Manners, H. R., et al., 2021. Late Ordovician Climate Change and Extinctions Driven by Elevated Volcanic Nutrient Supply. Nature Geoscience, 14(12): 924–929. https://doi.org/10.1038/s41561-021-00855-5
    Luo, T., Li, Q. L., Ling, X. X., et al., 2021. Jilin Zircon—A New Natural Reference Material for Microbeam U-Pb Geochronology and Hf-O Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 36(10): 2216–2226. https://doi.org/10.1039/d1ja00258a
    Metzger, J. G., Ramezani, J., Bowring, S. A., et al., 2021. New Age Constraints on the Duration and Origin of the Late Ordovician Guttenberg δ13Ccarb Excursion from High-Precision U-Pb Geochronology of K-Bentonites. GSA Bulletin, 133(3/4): 580–590. https://doi.org/10.1130/b35688.1
    Miao, Y., Zhou, Y., Zhou, J. X., et al., 2022. The Origin of the Black Shale Series and Bentonites from the Wufeng Formation in the Southwestern Upper Yangtze: Implications for the Convergence of the Yangtze and Cathaysia Blocks in the Late Ordovician. Acta Geologica Sinica—English Edition, 96(6): 1897–1916. https://doi.org/10.1111/1755-6724.14939
    Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., et al., 2008. Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS. Chemical Geology, 255(1/2): 231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040
    Ouyang, L. Y., Huang, W. T., Wu, J., et al., 2023. Identification of the First Caledonian A-Type Granitoids in the Southern Qin-Hang Belt of South China: Tectonic Link to Early Paleozoic Extension. Solid Earth Sciences, 8(1): 68–85. https://doi.org/10.1016/j.sesci.2022.12.001
    Qin, J. F., Lai, S. C., Zhang, Z. H., et al., 2022. Crustal Growth and Evolution in Convergent Margin: Evidence from Three Paleozoic Granitic Pulses in the Junction Zone between Qinling and Qilian Orogenic Belt. Lithos, 434/435: 106938. https://doi.org/10.1016/j.lithos.2022.106938
    Qiu, Z., Zou, C. N., Mills, B. J. W., et al., 2022a. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Communications Earth & Environment, 3: 82. https://doi.org/10.1038/s43247-022-00412-x
    Qiu, Z., Wei, H. Y., Tian, L., et al., 2022b. Different Controls on the Hg Spikes Linked the Two Pulses of the Late Ordovician Mass Extinction in South China. Scientific Reports, 12: 5195. https://doi.org/10.1038/s41598-022-08941-3
    Qiu, Z., Kong, W. L., Zhang, J. Q., et al., 2025. Mercury Evidences Link Intensive Volcanism to the Late Ordovician Mass Extinction and Changes in the Atmosphere-Land-Ocean System. The Innovation Geoscience, 3(2): 100124. https://doi.org/10.59717/j.xinn-geo.2024.100124
    Ren, L., Liang, H. Y., Bao, Z. W., et al., 2021. Early Paleozoic Magmatic "Flare-ups" in Western Qinling Orogeny, China: New Insights into the Convergence History of the North and South China Blocks at the Northern Margin of Gondwana. Lithos, 380/381: 105833. https://doi.org/10.1016/j.lithos.2020.105833
    Rong, J. Y., Harper, D. A. T., Huang, B., et al., 2020. The Latest Ordovician Hirnantian Brachiopod Faunas: New Global Insights. Earth-Science Reviews, 208: 103280. https://doi.org/10.1016/j.earscirev.2020.103280
    Sell, B., Ainsaar, L., Leslie, S., 2013. Precise Timing of the Late Ordovician (Sandbian) Super-Eruptions and Associated Environmental, Biological, and Climatological Events. Journal of the Geological Society, 170(5): 711–714. https://doi.org/10.1144/jgs2012-148
    Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China: Two Tectonic Events in South China. Tectonics, 34(8): 1600–1621. https://doi.org/10.1002/2015tc003835
    Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician–Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111–130. https://doi.org/10.1016/j.gr.2008.06.004
    Tang, L., Song, Y., Jiang, S., et al., 2020. Organic Matter Accumulation of the Wufeng-Longmaxi Shales in Southern Sichuan Basin: Evidence and Insight from Volcanism. Marine and Petroleum Geology, 120: 104564. https://doi.org/10.1016/j.marpetgeo.2020.104564
    Tao, H. F., Qiu, Z., Lu, B., et al., 2020. Volcanic Activities Triggered the First Global Cooling Event in the Phanerozoic. Journal of Asian Earth Sciences, 194: 104074. https://doi.org/10.1016/j.jseaes.2019.104074
    Vervoort, J. D., Kemp, A. I. S., 2016. Clarifying the Zircon Hf Isotope Record of Crust-Mantle Evolution. Chemical Geology, 425: 65–75. https://doi.org/10.1016/j.chemgeo.2016.01.023
    Wang, L. J., Lin, S. F., Xiao, W. J., 2023. Yangtze and Cathaysia Blocks of South China: Their Separate Positions in Gondwana until Early Paleozoic Juxtaposition. Geology, 51(8): 723–727. https://doi.org/10.1130/g51362.1
    Wang, R. R., Xu, Z. Q., Santosh, M., et al., 2017. Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Tectonophysics, 712/713: 270–288. https://doi.org/10.1016/j.tecto.2017.05.021
    Wang, T., Wang, X. X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Science in China Series D: Earth Sciences, 52(9): 1359–1384. https://doi.org/10.1007/s11430-009-0129-5
    Wang, T. R., Ran, B., Liu, S. G., et al., 2025. Zircon U-Pb Ages, Trace Elements, and Hf Isotopes Establish a Genetic Link between Volcanic Ash Beds and Porphyritic Intrusions during Early Silurian in the South China Block. Lithos, 494/495: 107890. https://doi.org/10.1016/j.lithos.2024.107890
    Xiao, B., Xiong, L., Zhao, Z. Y., et al., 2023. Late Ordovician-Early Silurian Extension of the Northern Margin of the Upper Yangtze Platform (South China) and Its Impact on Organic Matter Accumulation. Journal of Petroleum Science and Engineering, 220: 111238. https://doi.org/10.1016/j.petrol.2022.111238
    Xiong, G., Wang, J., Li, Y., et al., 2019. Zircon U-Pb Dating of K-Bentonite from Late Ordovician Wufeng Formation and Earlier Silurian Longmaxi Formation in the Eastern Section of South Dbashan and Its Tectonic Signification. Acta Geologica Sinica, 93(4): 843–864 (in Chinese with English Abstract)
    Xu, J. H., Zhang, Z. W., Wu, C. Q., et al., 2024. Early Ordovician–Middle Silurian Subduction-Closure of the Proto-Tethys Ocean: Evidence from the Qiaerlong Pluton at the Northwestern Margin of the West Kunlun Orogenic Belt, NW China. Journal of Earth Science, 35(2): 430–448. https://doi.org/10.1007/s12583-021-1453-8
    Xu, Y. J., Cawood, P. A., Du, Y. S., 2016. Intraplate Orogenesis in Response to Gondwana Assembly: Kwangsian Orogeny, South China. American Journal of Science, 316(4): 329–362. https://doi.org/10.2475/04.2016.02
    Yang, H., Yao, J. L., Zhao, G. C., et al., 2025. The Early Paleozoic Intracontinental Orogeny in South China: a Far-Field Response to the Closure of the Proto-Tethys Ocean in the Indochina Block. Geological Society of America Bulletin, 137(5/6): 2682–2702. https://doi.org/10.1130/b37921.1
    Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian–Triassic Volcanogenic Sediments in China. Sedimentary Geology, 261/262: 120–131. https://doi.org/10.1016/j.sedgeo.2012.03.018
    Yang, S. C., Hu, W. X., Wang, X. L., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician–Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13–25. https://doi.org/10.1016/j.epsl.2019.04.020
    Yang, Y., Ma, C. Q., Wang, S. M., 2019. Zircon U-Pb Dating and Lu-Hf Isotope of the Upper Ordovician K-Bentonites in Yichang and Their Trace Significance. Acta Geologica Sinica, 93(12): 3183–3196 (in Chinese with English Abstract)
    Zhan, R. B., Jin, J. S., Liu, J. B., et al., 2016. Meganodular Limestone of the Pagoda Formation: a Time-Specific Carbonate Facies in the Upper Ordovician of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 349–362. https://doi.org/10.1016/j.palaeo.2015.07.039
    Zhang, C. L., Liu, L., Wang, T., et al., 2013. Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling. Chinese Science Bulletin, 58(35): 4405–4410. https://doi.org/10.1007/s11434-013-6064-z
    Zhang, C. L., Zhu, Q. B., Chen, X. Y., et al., 2016. Ordovician Arc-Related Mafic Intrusions in South China: Implications for Plate Subduction along the Southeastern Margin of South China in the Early Paleozoic. The Journal of Geology, 124(6): 743–767. https://doi.org/10.1086/688640
    Zhang, J., Xu, Y. J., 2024. Is the Strike-Slip Convergence the Cause of the Kwangsian Orogeny in South China? Acta Sedimentologica Sinica, 42(6): 1903–1917. https://doi.org/10.14027/j.issn.1000-0550.2023.122 (in Chinese with English Abstract)
    Zhao, J. H., Yang, T., Wang, W., 2022. Orogenic Belt Resulting from Ocean-Continent Collision. Geology, 50(11): 1266–1269. https://doi.org/10.1130/g50337.1
    Zi, J. W., Rasmussen, B., Muhling, J. R., et al., 2022. In situ U-Pb and Geochemical Evidence for Ancient Pb-Loss during Hydrothermal Alteration Producing Apparent Young Concordant Zircon Dates in Older Tuffs. Geochimica et Cosmochimica Acta, 320: 324–338. https://doi.org/10.1016/j.gca.2021.11.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(306) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return