Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Zeyang Liu, Meilin Jiang, Fuming Zhou, David Selby, Zhen Qiu. Role of Terrestrial Organic Matter in Re and Os Uptake: Insights for Re-Os Dating of Organic-Bearing Sedimentary Rocks and Weathering of Organic Carbon. Journal of Earth Science, 2025, 36(5): 2109-2116. doi: 10.1007/s12583-025-0255-9
Citation: Zeyang Liu, Meilin Jiang, Fuming Zhou, David Selby, Zhen Qiu. Role of Terrestrial Organic Matter in Re and Os Uptake: Insights for Re-Os Dating of Organic-Bearing Sedimentary Rocks and Weathering of Organic Carbon. Journal of Earth Science, 2025, 36(5): 2109-2116. doi: 10.1007/s12583-025-0255-9

Role of Terrestrial Organic Matter in Re and Os Uptake: Insights for Re-Os Dating of Organic-Bearing Sedimentary Rocks and Weathering of Organic Carbon

doi: 10.1007/s12583-025-0255-9
More Information
  • The rhenium-osmium (Re-Os) isotope system is a powerful tool for dating organic-rich sedimentary rocks, yet the mechanisms of Re and Os uptake and their fractionation in different types of organic matter remain poorly understood. Here, we investigate the role of terrestrial organic matter (e.g., wood of the species Taxodium distichum and charcoal generated from the same species in the laboratory) in Re and Os enrichment and isotope fractionation through laboratory experiments. The results show that charcoal has a significantly higher capacity to uptake both Re (68–77 times greater) and Os (1.7–2.2 times higher) compared to wood, with charcoal preferentially accumulating Re over Os, leading to higher 187Re/188Os ratios. These findings highlight the important contribution of terrestrial organic matter, particularly charcoal, to Re and Os concentrations and isotope fractionation in shales, and the importance of organic matter type for chelating Re and Os as previously discussed. Furthermore, we discuss the potential of using Re to track organic carbon weathering, noting that the coupled release of Re and organic carbon during weathering provides new insights into carbon cycling processes.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Azmy, K., Kendall, B., Creaser, R. A., et al., 2008. Global Correlation of the Vazante Group, São Francisco Basin, Brazil: Re-Os and U-Pb Radiometric Age Constraints. Precambrian Research, 164(3/4): 160–172. https://doi.org/10.1016/j.precamres.2008.05.001
    Birck, J. L., Barman, M. R., Capmas, F., 1997. Re-Os Isotopic Measurements at the Femtomole Level in Natural Samples. Geostandards and Geoanalytical Research, 21(1): 19–27. https://doi.org/10.1111/j.1751-908x.1997.tb00528.x
    Bolton, E. W., Berner, R. A., Petsch, S. T., 2006. The Weathering of Sedimentary Organic Matter as a Control on Atmospheric O2: Ⅱ. Theoretical Modeling. American Journal of Science, 306(8): 575–615. https://doi.org/10.2475/08.2006.01
    Cohen, A. S., Coe, A. L., Bartlett, J. M., et al., 1999. Precise Re-Os Ages of Organic-Rich Mudrocks and the Os Isotope Composition of Jurassic Seawater. Earth and Planetary Science Letters, 167(3/4): 159–173. https://doi.org/10.1016/s0012-821x(99)00026-6
    Cohen, A. S., Waters, F. G., 1996. Separation of Osmium from Geological Materials by Solvent Extraction for Analysis by Thermal Ionisation Mass Spectrometry. Analytica Chimica Acta, 332(2/3): 269–275. https://doi.org/10.1016/0003-2670(96)00226-7
    Creaser, R. A., Sannigrahi, P., Chacko, T., et al., 2002. Further Evaluation of the Re-Os Geochronometer in Organic-Rich Sedimentary Rocks: A Test of Hydrocarbon Maturation Effects in the Exshaw Formation, Western Canada Sedimentary Basin. Geochimica et Cosmochimica Acta, 66(19): 3441–3452. https://doi.org/10.1016/s0016-7037(02)00939-0
    Cumming, V. M., Poulton, S. W., Rooney, A. D., et al., 2013. Anoxia in the Terrestrial Environment during the Late Mesoproterozoic. Geology, 41(5): 583–586. https://doi.org/10.1130/g34299.1
    Cumming, V. M., Selby, D., Lillis, P. G., 2012. Re-Os Geochronology of the Lacustrine Green River Formation: Insights into Direct Depositional Dating of Lacustrine Successions, Re-Os Systematics and Paleocontinental Weathering. Earth and Planetary Science Letters, 359: 194–205. https://doi.org/10.1016/j.epsl.2012.10.012
    Dalai, T. K., Singh, S. K., Trivedi, J. R., et al., 2002. Dissolved Rhenium in the Yamuna River System and the Ganga in the Himalaya: Role of Black Shale Weathering on the Budgets of Re, Os, and U in Rivers and CO2 in the Atmosphere. Geochimica et Cosmochimica Acta, 66(1): 29–43. https://doi.org/10.1016/s0016-7037(01)00747-5
    Dellinger, M., Hilton, R. G., Baronas, J. J., et al., 2023. High Rates of Rock Organic Carbon Oxidation Sustained as Andean Sediment Transits the Amazon Foreland-Floodplain. Proc. Natl. Acad. Sci. USA, 120(39): e2306343120. https://doi.org/10.1073/pnas.2306343120
    Dellinger, M., Hilton, R. G., Nowell, G. M., 2020. Measurements of Rhenium Isotopic Composition in Low-Abundance Samples. Journal of Analytical Atomic Spectrometry, 35(2): 377–387. https://doi.org/10.1039/c9ja00288j
    Du Vivier, A. D. C., Selby, D., Condon, D. J., et al., 2015. Pacific 187Os/188Os Isotope Chemistry and U-Pb Geochronology: Synchroneity of Global Os Isotope Change across OAE 2. Earth and Planetary Science Letters, 428: 204–216. https://doi.org/10.1016/j.epsl.2015.07.020
    Du Vivier, A. D. C., Selby, D., Sageman, B. B., et al., 2014. Marine 187Os/188Os Isotope Stratigraphy Reveals the Interaction of Volcanism and Ocean Circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 389: 23–33. https://doi.org/10.1016/j.epsl.2013.12.024
    Finlay, A. J., Selby, D., Gröcke, D. R., 2010. Tracking the Hirnantian Glaciation Using Os Isotopes. Earth and Planetary Science Letters, 293(3/4): 339–348. https://doi.org/10.1016/j.epsl.2010.02.049
    Galy, V., Beyssac, O., France-Lanord, C., et al., 2008. Recycling of Graphite during Himalayan Erosion: A Geological Stabilization of Carbon in the Crust. Science, 322(5903): 943–945. https://doi.org/10.1126/science.1161408
    Georgiev, S., Stein, H. J., Hannah, J. L., et al., 2012. Chemical Signals for Oxidative Weathering Predict Re-Os Isochroneity in Black Shales, East Greenland. Chemical Geology, 324: 108–121. https://doi.org/10.1016/j.chemgeo.2012.01.003
    Gong, D. Y., Liu, Z. Y., Zhou, C. M., et al., 2024. Carboniferous–Permian Interglacial Warming and Volcanism Temporally Linked to the World's Oldest Alkaline Lake Deposit of the Fengcheng Formation, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 654: 112441. https://doi.org/10.1016/j.palaeo.2024.112441
    Goswami, V., Hannah, J. L., Stein, H. J., 2018. Why Terrestrial Coals Cannot Be Dated Using the Re-Os Geochronometer: Evidence from the Finnmark Platform, Southern Barents Sea and the Fire Clay Coal Horizon, Central Appalachian Basin. International Journal of Coal Geology, 188: 121–135. https://doi.org/10.1016/j.coal.2018.02.005
    Hannah, J. L., Bekker, A., Stein, H. J., et al., 2004. Primitive Os and 2316 Ma Age for Marine Shale: Implications for Paleoproterozoic Glacial Events and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 225(1/2): 43–52. https://doi.org/10.1016/j.epsl.2004.06.013
    Harris, N. B., Mnich, C. A., Selby, D., et al., 2013. Minor and Trace Element and Re-Os Chemistry of the Upper Devonian Woodford Shale, Permian Basin, West Texas: Insights into Metal Abundance and Basin Processes. Chemical Geology, 356: 76–93. https://doi.org/10.1016/j.chemgeo.2013.07.018
    Hilton, R. G., Gaillardet, J., Calmels, D., et al., 2014. Geological Respiration of a Mountain Belt Revealed by the Trace Element Rhenium. Earth and Planetary Science Letters, 403: 27–36. https://doi.org/10.1016/j.epsl.2014.06.021
    Hilton, R. G., Turowski, J. M., Winnick, M., et al., 2021. Concentration-Discharge Relationships of Dissolved Rhenium in Alpine Catchments Reveal Its Use as a Tracer of Oxidative Weathering. Water Resources Research, 57(11): e2021WR029844. https://doi.org/10.1029/2021wr029844
    Hilton, R. G., West, A. J., 2020. Mountains, Erosion and the Carbon Cycle. Nature Reviews Earth & Environment, 1(6): 284–299. https://doi.org/10.1038/s43017-020-0058-6
    Horan, K., Hilton, R. G., Selby, D., et al., 2017. Mountain Glaciation Drives Rapid Oxidation of Rock-Bound Organic Carbon. Sci. Adv. , 3(10): e1701107. https://doi.org/10.1126/sciadv.1701107
    Jaffe, L. A., Peucker-Ehrenbrink, B., Petsch, S. T., 2002. Mobility of Rhenium, Platinum Group Elements and Organic Carbon during Black Shale Weathering. Earth and Planetary Science Letters, 198(3/4): 339–353. https://doi.org/10.1016/s0012-821x(02)00526-5
    Kemp, D. B., Selby, D., Izumi, K., 2020. Direct Coupling between Carbon Release and Weathering during the Toarcian Oceanic Anoxic Event. Geology, 48(10): 976–980. https://doi.org/10.1130/g47509.1
    Kendall, B. S., Creaser, R. A., Ross, G. M., et al., 2004. Constraints on the Timing of Marinoan "Snowball Earth" Glaciation by 187Re-187Os Dating of a Neoproterozoic, Post-Glacial Black Shale in Western Canada. Earth and Planetary Science Letters, 222(3/4): 729–740. https://doi.org/10.1016/j.epsl.2004.04.004
    Kendall, B., Creaser, R. A., Gordon, G. W., et al., 2009. Re-Os and Mo Isotope Systematics of Black Shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, Northern Australia. Geochimica et Cosmochimica Acta, 73(9): 2534–2558. https://doi.org/10.1016/j.gca.2009.02.013
    Kendall, B., van Acken, D., Creaser, R. A., 2013. Depositional Age of the Early Paleoproterozoic Klipputs Member, Nelani Formation (Ghaap Group, Transvaal Supergroup, South Africa) and Implications for Low-Level Re-Os Geochronology and Paleoproterozoic Global Correlations. Precambrian Research, 237: 1–12. https://doi.org/10.1016/j.precamres.2013.08.002
    Liu, Z. Y., Horton, D. E., Tabor, C., et al., 2019a. Assessing the Contributions of Comet Impact and Volcanism Toward the Climate Perturbations of the Paleocene–Eocene Thermal Maximum. Geophysical Research Letters, 46(24): 14798–14806. https://doi.org/10.1029/2019gl084818
    Liu, Z. Y., Selby, D., 2021. Deep-Water Osmium-Isotope Record of the Permian–Triassic Interval from Niushan, China Reveals Potential Delayed Volcanic Signal Post the Mass Extinction. Global and Planetary Change, 200: 103473. https://doi.org/10.1016/j.gloplacha.2021.103473
    Liu, Z. Y., Selby, D., Hackley, P. C., et al., 2020a. Evidence of Wildfires and Elevated Atmospheric Oxygen at the Frasnian-Famennian Boundary in New York (USA): Implications for the Late Devonian Mass Extinction. Geological Society of America Bulletin, 132(9/10): 2043–2054. https://doi.org/10.1130/b35457.1
    Liu, Z. Y., Selby, D., Zhang, H., et al., 2019b. Osmium-Isotope Evidence for Volcanism across the Wuchiapingian–Changhsingian Boundary Interval. Chemical Geology, 529: 119313. https://doi.org/10.1016/j.chemgeo.2019.119313
    Liu, Z. Y., Selby, D., Zhang, H., et al., 2020b. Evidence for Volcanism and Weathering during the Permian–Triassic Mass Extinction from Meishan (South China) Osmium Isotope Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109790. https://doi.org/10.1016/j.palaeo.2020.109790
    Lyu, C., Gao, J. F., Qi, L., 2023. Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387–4403. https://doi.org/10.3799/dqkx.2023.061 (in Chinese with English Abstract)
    Percival, L. M. E., Cohen, A. S., Davies, M. K., et al., 2016. Osmium Isotope Evidence for Two Pulses of Increased Continental Weathering Linked to Early Jurassic Volcanism and Climate Change. Geology, 44(9): 759–762. https://doi.org/10.1130/g37997.1
    Pietras, J. T., Selby, D., Brembs, R., et al., 2020. Tracking Drainage Basin Evolution, Continental Tectonics, and Climate Change: Implications from Osmium Isotopes of Lacustrine Systems. Palaeogeography Palaeoclimatology Palaeoecology, 537: 109471. https://doi.org/10.1016/j.palaeo.2019.109471
    Poirier, A., Hillaire-Marcel, C., 2009. Os-Isotope Insights into Major Environmental Changes of the Arctic Ocean during the Cenozoic. Geophysical Research Letters, 36(11): 2009GL037422. https://doi.org/10.1029/2009gl037422
    Porter, S. J., Smith, P. L., Caruthers, A. H., et al., 2014. New High Resolution Geochemistry of Lower Jurassic Marine Sections in Western North America: A Global Positive Carbon Isotope Excursion in the Sinemurian? Earth and Planetary Science Letters, 397: 19–31. https://doi.org/10.1016/j.epsl.2014.04.023
    Qiu, Z., Mills, B., Zou, C. N., et al., 2024. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Goldschmidt 2024 Abstracts. Geochemical Society, August 18–23, 2024, Chicago. https://doi.org/10.46427/gold2024.23253
    Racionero-Gómez, B., Sproson, A. D., Selby, D., et al., 2016. Rhenium Uptake and Distribution in Phaeophyceae Macroalgae, Fucus Vesiculosus. R. Soc. Open. Sci. , 3(5): 160–161. https://doi.org/10.1098/rsos.160161
    Racionero-Gómez, B., Sproson, A. D., Selby, D., et al., 2017. Osmium Uptake, Distribution, and 187Os/188Os and 187Re/188Os Compositions in Phaeophyceae Macroalgae, Fucus Vesiculosus: Implications for Determining the 187Os/188Os Composition of Seawater. Geochimica et Cosmochimica Acta, 199: 48–57. https://doi.org/10.1016/j.gca.2016.11.033
    Ravizza, G., Turekian, K. K., 1989. Application of the 187Re-187Os System to Black Shale Geochronometry. Geochimica et Cosmochimica Acta, 53(12): 3257–3262. https://doi.org/10.1016/0016-7037(89)90105-1
    Rooney, A. D., Cantine, M. D., Bergmann, K. D., et al., 2020. Calibrating the Coevolution of Ediacaran Life and Environment. PNAS, 117(29): 16824–16830. https://doi.org/10.1073/pnas.2002918117
    Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. PNAS, 111(1): 51–56.https://doi.org/10.1073/pnas.1317266110
    Rooney, A. D., Selby, D., Houzay, J. P., et al., 2010. Re-Os Geochronology of a Mesoproterozoic Sedimentary Succession, Taoudeni Basin, Mauritania: Implications for Basin-Wide Correlations and Re-Os Organic-Rich Sediments Systematics. Earth and Planetary Science Letters, 289(3/4): 486–496. https://doi.org/10.1016/j.epsl.2009.11.039
    Rooney, A. D., Selby, D., Lewan, M. D., et al., 2012. Evaluating Re-Os Systematics in Organic-Rich Sedimentary Rocks in Response to Petroleum Generation Using Hydrous Pyrolysis Experiments. Geochimica et Cosmochimica Acta, 77: 275–291. https://doi.org/10.1016/j.gca.2011.11.006
    Rotich, E. K., Handler, M. R., Naeher, S., et al., 2020. Re-Os Geochronology and Isotope Systematics, and Organic and Sulfur Geochemistry of the Middle–Late Paleocene Waipawa Formation, New Zealand: Insights into Early Paleogene Seawater Os Isotope Composition. Chemical Geology, 536: 119473. https://doi.org/10.1016/j.chemgeo.2020.119473
    Rotich, E. K., Handler, M. R., Sykes, R., et al., 2021. Depositional Influences on Re-Os Systematics of Late Cretaceous–Eocene Fluvio-Deltaic Coals and Coaly Mudstones, Taranaki Basin, New Zealand. International Journal of Coal Geology, 236: 103670. https://doi.org/10.1016/j.coal.2020.103670
    Sato, H., Onoue, T., Nozaki, T., et al., 2013. Osmium Isotope Evidence for a Large Late Triassic Impact Event. Nat. Commun. , 4: 2455. https://doi.org/10.1038/ncomms3455
    Scott, A. C., Glasspool, I. J., 2007. Observations and Experiments on the Origin and Formation of Inertinite Group Macerals. International Journal of Coal Geology, 70(1/2/3): 53–66. https://doi.org/10.1016/j.coal.2006.02.009
    Selby, D., Creaser, R. A., 2003. Re-Os Geochronology of Organic Rich Sediments: An Evaluation of Organic Matter Analysis Methods. Chemical Geology, 200(3/4): 225–240. https://doi.org/10.1016/s0009-2541(03)00199-2
    Selby, D., Creaser, R. A., 2005. Direct Radiometric Dating of the Devonian-Mississippian Time-Scale Boundary Using the Re-Os Black Shale Geochronometer. Geology, 33(7): 545. https://doi.org/10.1130/g21324.1
    Selby, D., Creaser, R. A., Fowler, M. G., 2007. Re-Os Elemental and Isotopic Systematics in Crude Oils. Geochimica et Cosmochimica Acta, 71(2): 378–386. https://doi.org/10.1016/j.gca.2006.09.005
    Selby, D., Cumming, V. M., Rooney, A. D., et al., 2013. Hydrocarbons/Rhenium-Osmium (Re-Os): Organic-Rich Sedimentary Rocks. Encyclopedia of Scientific Dating Methods. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_17-5
    Selby, D., Mutterlose, J., Condon, D. J., 2009. U-Pb and Re-Os Geochronology of the Aptian/Albian and Cenomanian/Turonian Stage Boundaries: Implications for Timescale Calibration, Osmium Isotope Seawater Composition and Re-Os Systematics in Organic-Rich Sediments. Chemical Geology, 265(3/4): 394–409. https://doi.org/10.1016/j.chemgeo.2009.05.005
    Soulet, G., Hilton, R. G., Garnett, M. H., et al., 2021. Temperature Control on CO2 Emissions from the Weathering of Sedimentary Rocks. Nature Geoscience, 14(9): 665–671. https://doi.org/10.1038/s41561-021-00805-1
    Stein, H., Hannah, J., 2014. Rhenium-Osmium Geochronology: Sulfides, Shales, Oils, and Mantle. Encyclopedia of Scientific Dating Methods. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_36-1
    Takashima, R., Selby, D., Yamanaka, T., et al., 2024. Large Igneous Province Activity Drives Oceanic Anoxic Event 2 Environmental Change across Eastern Asia. Communications Earth & Environment, 5: 85. https://doi.org/10.1038/s43247-024-01214-z
    Them, T. R., Gill, B. C., Selby, D., et al., 2017. Evidence for Rapid Weathering Response to Climatic Warming during the Toarcian Oceanic Anoxic Event. Sci. Rep. , 7(1): 5003. https://doi.org/10.1038/s41598-017-05307-y
    Tong, A., Gao, Y. X., 2023. Re-Os Dating of the Wusihe Paleo-Reservoir and Its Response to Emeishan Large Igneous Province Actvities in the Southwest Sichuan Basin. Earth Science, 48(2): 568–581. https://doi.org/10.3799/dqkx.2022.370 (in Chinese with English Abstract)
    Tripathy, G. R., Hannah, J. L., Stein, H. J., et al., 2015. Radiometric Dating of Marine-Influenced Coal Using Re-Os Geochronology. Earth and Planetary Science Letters, 432: 13–23. https://doi.org/10.1016/j.epsl.2015.09.030
    Turgeon, S. C., Creaser, R. A., 2008. Cretaceous Oceanic Anoxic Event 2 Triggered by a Massive Magmatic Episode. Nature, 454(7202): 323–326. https://doi.org/10.1038/nature07076
    Turgeon, S. C., Creaser, R. A., Algeo, T. J., 2007. Re-Os Depositional Ages and Seawater Os Estimates for the Frasnian–Famennian Boundary: Implications for Weathering Rates, Land Plant Evolution, and Extinction Mechanisms. Earth and Planetary Science Letters, 261(3/4): 649–661. https://doi.org/10.1016/j.epsl.2007.07.031
    van Acken, D., Thomson, D., Rainbird, R. H., et al., 2013. Constraining the Depositional History of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada: Rhenium-Osmium Dating of Black Shales from the Wynniatt and Boot Inlet Formations. Precambrian Research, 236: 124–131. https://doi.org/10.1016/j.precamres.2013.07.012
    van Acken, D., Tütken, T., Daly, J. S., et al., 2019. Rhenium-Osmium Geochronology of the Toarcian Posidonia Shale, SW Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109294. https://doi.org/10.1016/j.palaeo.2019.109294
    Washburn, A. M., Hudson, S. M., Selby, D., et al., 2019. Constraining the Timing and Depositional Conditions of the Maikop Formation within the Kura Basin, Eastern Azerbaijan, through the Application of Re-Os Geochronology and Chemostratigraphy. Journal of Petroleum Geology, 42(3): 281–299. https://doi.org/10.1111/jpg.12734
    Xu, W. M., Ruhl, M., Jenkyns, H. C., et al., 2017. Carbon Sequestration in an Expanded Lake System during the Toarcian Oceanic Anoxic Event. Nature Geoscience, 10(2): 129–134. https://doi.org/10.1038/ngeo2871
    Yamashita, Y., Takahashi, Y., Haba, H., et al., 2007. Comparison of Reductive Accumulation of Re and Os in Seawater-Sediment Systems. Geochimica et Cosmochimica Acta, 71(14): 3458–3475. https://doi.org/10.1016/j.gca.2007.05.003
    Zondervan, J. R., Hilton, R. G., Dellinger, M., et al., 2023. Rock Organic Carbon Oxidation CO2 Release Offsets Silicate Weathering Sink. Nature, 623(7986): 329–333. https://doi.org/10.1038/s41586-023-06581-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(123) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return