Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Zhe Sun, Kejia Ji, Can-Ge Li, Mingda Wang, Juzhi Hou. A Sediment Record from a Modern Glacial Lake in the Central Himalayas: Implications for Proxy Interpretation in Glacial Lake Studies. Journal of Earth Science, 2025, 36(6): 2763-2770. doi: 10.1007/s12583-025-0260-z
Citation: Zhe Sun, Kejia Ji, Can-Ge Li, Mingda Wang, Juzhi Hou. A Sediment Record from a Modern Glacial Lake in the Central Himalayas: Implications for Proxy Interpretation in Glacial Lake Studies. Journal of Earth Science, 2025, 36(6): 2763-2770. doi: 10.1007/s12583-025-0260-z

A Sediment Record from a Modern Glacial Lake in the Central Himalayas: Implications for Proxy Interpretation in Glacial Lake Studies

doi: 10.1007/s12583-025-0260-z
More Information
  • The Himalayan-Tibetan Orogen holds numerous glaciers crucial for the Asian Water Tower, thus influencing the surface energy balance and climate feedback. Understanding glacier fluctuations is essential for improving our knowledge of current and future glacial evolution, but limited by short modern glacial observations. Proglacial lakes provide valuable opportunities to obtain high-resolution and continuous glacial changes, but detailed investigations remain scarce. For example, there is still controversy over whether lake sediments reflect melting or ablation. Therefore, we selected a modern glacial lake in the Himalayan region, formed due to glacial retreat in the 1960s, and compared its sedimentary records with modern observations. This provides a case study for future reconstruction of glacial changes using lake sediments. Our results indicate that the sediments of the proglacial lake are primarily influenced by glacial meltwater. Stronger meltwater fluxes transport more debris, magnetic minerals, and terrestrially derived organic matter to the lake. In terms of grain size distribution, the fine silt component (2–8 μm) can serve as an indicator of glacial meltwater intensity. Additionally, this study reveals an opposite trend between glacial meltwater variations and air temperature trends over the past few decades. This suggests that evaporation may offset the increase in glacial meltwater, though the multi-century (> 100-year) trend requires validation with longer records.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Boulton, G. S., 1978. Boulder Shapes and Grain-Size Distributions of Debris as Indicators of Transport Paths through a Glacier and till Genesis. Sedimentology, 25(6): 773–799. https://doi.org/10.1111/j.1365-3091.1978.tb00329.x
    Carosi, R., Montomoli, C., Iaccarino, S., 2018. 20 Years of Geological Mapping of the Metamorphic Core across Central and Eastern Himalayas. Earth-Science Reviews, 177: 124–138. https://doi.org/10.1016/j.earscirev.2017.11.006
    Cockburn, J. M. H., Lamoureux, S. F., 2008. Inflow and Lake Controls on Short-Term Mass Accumulation and Sedimentary Particle Size in a High Arctic Lake: Implications for Interpreting Varved Lacustrine Sedimentary Records. Journal of Paleolimnology, 40(3): 923–942. https://doi.org/10.1007/s10933-008-9207-5
    Dong, Z. W., Jiang, H. C., Baccolo, G., et al., 2023. Biological and Pollution Aerosols on Snow and Ice—Interplay between the Atmosphere and the Cryosphere. Journal of Earth Science, 34(6): 1951–1956. https://doi.org/10.1007/s12583-023-2004-2
    Finkel, R. C., Owen, L. A., Barnard, P. L., et al., 2003. Beryllium-10 Dating of Mount Everest Moraines Indicates a Strong Monsoon Influence and Glacial Synchroneity Throughout the Himalaya. Geology, 31(6): 561–564. https://doi.org/10.1130/0091-7613(2003)0310561:bdomem>2.0.co;2 doi: 10.1130/0091-7613(2003)0310561:bdomem>2.0.co;2
    Folk, R. L., Ward, W. C., 1957. Brazos River Bar: A Study in the Significance of Grain Size Parameters. Journal of Sedimentary Research, 27(1): 3–26. https://doi.org/10.1306/74d70646-2b21-11d7-8648000102c1865d
    Ghezzi, L., Petrini, R., Montomoli, C., et al., 2017. Findings on Water Quality in Upper Mustang (Nepal) from a Preliminary Geochemical and Geological Survey. Environmental Earth Sciences, 76(19): 651. https://doi.org/10.1007/s12665-017-6991-0
    Hilton, J., 1987. A Simple Model for the Interpretation of Magnetic Records in Lacustrine and Ocean Sediments. Quaternary Research, 27(2): 160–166. https://doi.org/10.1016/0033-5894(87)90074-3
    Hou, J. Z., Tian, Q., Liang, J., et al., 2017. Climatic Implications of Hydrologic Changes in Two Lake Catchments on the Central Tibetan Plateau since the Last Glacial. Journal of Paleolimnology, 58(2): 257–273. https://doi.org/10.1007/s10933-017-9976-9
    Huang, L., Zhu, L. P., Wang, J. B., et al., 2016. Glacial Activity Reflected in a Continuous Lacustrine Record since the Early Holocene from the Proglacial Laigu Lake on the Southeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 456: 37–45. https://doi.org/10.1016/j.palaeo.2016.05.019
    Immerzeel, W. W., van Beek, L. P. H., Bierkens, M. F. P., 2010. Climate Change Will Affect the Asian Water Towers. Science, 328(5984): 1382–1385. https://doi.org/10.1126/science.1183188
    Ju, J. T., Zhu, L. P., Huang, L., et al., 2015. Ranwu Lake, a Proglacial Lake with the Potential to Reflect Glacial Activity in SE Tibet. Chinese Science Bulletin, 60(1): 16–30 (in Chinese) doi: 10.1360/N972014-00084
    Karki, R., Talchabhadel, R., Aalto, J., et al., 2016. New Climatic Classification of Nepal. Theoretical and Applied Climatology, 125(3): 799–808. https://doi.org/10.1007/s00704-015-1549-0
    Karlén, W., 1976. Lacustrine Sediments and Tree-Limit Variations as Indicators of Holocene Climatic Fluctuations in Lappland, Northern Sweden. Geografiska Annaler: Series A, Physical Geography, 58(1/2): 1–34. https://doi.org/10.1080/04353676.1976.11879921
    Kharal, D. K., Thapa, U. K., St George, S., et al., 2017. Tree-Climate Relations along an Elevational Transect in Manang Valley, Central Nepal. Dendrochronologia, 41: 57–64. https://doi.org/10.1016/j.dendro.2016.04.004
    Konchar, K. M., Staver, B., Salick, J., et al., 2015. Adapting in the Shadow of Annapurna: A Climate Tipping Point. Journal of Ethnobiology, 35(3): 449–471. https://doi.org/10.2993/0278-0771-35.3.449
    Kotov, S., Pälike, H., 2018. QAnalySeries—A Cross-Platform Time Series Tuning and Analysis Tool. AGU Fall Meeting Abstracts: PP53D-1230
    Kylander, M. E., Ampel, L., Wohlfarth, B., et al., 2011. High-Resolution X-Ray Fluorescence Core Scanning Analysis of Les Echets (France) Sedimentary Sequence: new Insights from Chemical Proxies. Journal of Quaternary Science, 26(1): 109–117. https://doi.org/10.1002/jqs.1438
    Lan, J. H., Wang, T. L., Chawchai, S., et al., 2020. Time Marker of 137Cs Fallout Maximum in Lake Sediments of Northwest China. Quaternary Science Reviews, 241: 106413. https://doi.org/10.1016/j.quascirev.2020.106413
    Landim, P. M. B., Frakes, L. A., 1968. Distinction between Tills and Other Diamictons Based on Textural Characteristics. Journal of Sedimentary Research, 38(4): 1213–1223. https://doi.org/10.1306/74d71b36-2b21-11d7-8648000102c1865d
    Lemke, P., Ren, J., Alley, R. B., et al., 2007. Observations: Changes in Snow, Ice and Frozen Ground. In: Solomon, S., Qin, D., Manning, M., et al., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, New York
    Leonard, E. M., 1986. Varve Studies at Hector Lake, Alberta, Canada, and the Relationship between Glacial Activity and Sedimentation. Quaternary Research, 25(2): 199–214. https://doi.org/10.1016/0033-5894(86)90057-8
    Li, C. G., Wang, M. D., Liu, W. G., et al., 2021. Quantitative Estimates of Holocene Glacier Meltwater Variations on the Western Tibetan Plateau. Earth and Planetary Science Letters, 559: 116766. https://doi.org/10.1016/j.epsl.2021.116766
    Liang, X. G., Song, C. Q., Liu, K., et al., 2023. Reconstructing Centennial-Scale Water Level of Large Pan-Arctic Lakes Using Machine Learning Methods. Journal of Earth Science, 34(4): 1218–1230. https://doi.org/10.1007/s12583-022-1739-5
    Lie, Ø., Dahl, S. O., Nesje, A., et al., 2004. Holocene Fluctuations of a Polythermal Glacier in High-Alpine Eastern Jotunheimen, Central-Southern Norway. Quaternary Science Reviews, 23(18/19): 1925–1945. https://doi.org/10.1016/j.quascirev.2004.03.012
    Liu, X. Q., Herzschuh, U., Wang, Y. B., et al., 2014. Glacier Fluctuations of Muztagh Ata and Temperature Changes during the Late Holocene in Westernmost Tibetan Plateau, Based on Glaciolacustrine Sediment Records. Geophysical Research Letters, 41(17): 6265–6273. https://doi.org/10.1002/2014gl060444
    Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583–596. https://doi.org/10.1007/s12583-022-1625-1
    Loso, M. G., Anderson, R. S., Anderson, S. P., et al., 2006. A 1500-Year Record of Temperature and Glacial Response Inferred from Varved Iceberg Lake, Southcentral Alaska. Quaternary Research, 66(1): 12–24. https://doi.org/10.1016/j.yqres.2005.11.007
    Lu, Y. B., Fritz, S. C., Stone, J. R., et al., 2017. Trends in Catchment Processes and Lake Evolution during the Late-Glacial and Early- to Mid-Holocene Inferred from High-Resolution XRF Data in the Yellowstone Region. Journal of Paleolimnology, 58(4): 551–569. https://doi.org/10.1007/s10933-017-9991-x
    Matthews, J. A., Olaf Dahl, S., Nesje, A., et al., 2000. Holocene Glacier Variations in Central Jotunheimen, Southern Norway Based on Distal Glaciolacustrine Sediment Cores. Quaternary Science Reviews, 19(16): 1625–1647. https://doi.org/10.1016/s0277-3791(00)00008-1
    Matthews, J. A., Karlen, W., 1992. Asynchronous Neoglaciation and Holocene Climatic Change Reconstructed from Norwegian Glaciolacustrine Sedimentary Sequences. Geology, 20(11): 991–994. https://doi.org/10.1130/0091-7613(1992)0200991:anahcc>2.3.co;2 doi: 10.1130/0091-7613(1992)0200991:anahcc>2.3.co;2
    Mueller, A. D., Islebe, G. A., Hillesheim, M. B., et al., 2009. Climate Drying and Associated Forest Decline in the Lowlands of Northern Guatemala during the Late Holocene. Quaternary Research, 71(2): 133–141. https://doi.org/10.1016/j.yqres.2008.10.002
    Muñoz Sabater, J., 2019. ERA5-Land monthly Averaged Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). [2025-1-10]. https://doi.org/10.24381/cds.68d2bb30
    Nesje, A., Olaf Dahl, S., Andersson, C., et al., 2000. The Lacustrine Sedimentary Sequence in Sygneskardvatnet, Western Norway: A Continuous, High-Resolution Record of the Jostedalsbreen Ice Cap during the Holocene. Quaternary Science Reviews, 19(11): 1047–1065. https://doi.org/10.1016/s0277-3791(99)00090-6
    Oerlemans, J., 2005. Extracting a Climate Signal from 169 Glacier Records. Science, 308(5722): 675–677. https://doi.org/10.1126/science.1107046
    Pritchard, H. D., 2017. Addendum: Editorial Expression of Concern: Asia's Glaciers are a regionally Important Buffer against Drought. Nature, 550(7677): 548. https://doi.org/10.1038/nature22062
    Pritchard, H. D., 2019. Asia's Shrinking Glaciers Protect Large Populations from Drought Stress. Nature, 569(7758): 649–654. https://doi.org/10.1038/s41586-019-1240-1
    Simonneau, A., Chapron, E., Garçon, M., et al., 2014. Tracking Holocene Glacial and High-Altitude Alpine Environments Fluctuations from Minerogenic and Organic Markers in Proglacial Lake Sediments (Lake Blanc Huez, Western French Alps). Quaternary Science Reviews, 89: 27–43. https://doi.org/10.1016/j.quascirev.2014.02.008
    Smith, N. D., 1978. Sedimentation Processes and Patterns in a Glacier-Fed Lake with Low Sediment Input. Canadian Journal of Earth Sciences, 15(5): 741–756. https://doi.org/10.1139/e78-081
    Snowball, I., Sandgren, P., Petterson, G., 1999. The Mineral Magnetic Properties of an Annually Laminated Holocene Lake-Sediment Sequence in Northern Sweden. The Holocene, 9(3): 353–362. https://doi.org/10.1191/095968399670520633
    Stansell, N. D., Polissar, P. J., Abbott, M. B., et al., 2014. Proglacial Lake Sediment Records Reveal Holocene Climate Changes in the Venezuelan Andes. Quaternary Science Reviews, 89: 44–55. https://doi.org/10.1016/j.quascirev.2014.01.021
    Su, F., Zhang, L., Ou, T., et al., 2016. Hydrological Response to Future Climate Changes for the Major Upstream River Basins in the Tibetan Plateau. Global and Planetary Change, 136: 82–95. https://doi.org/10.1016/j.gloplacha.2015.10.012
    Thompson, L. G., Yao, T., Davis, M. E., et al., 1997. Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core. Science, 276: 1821–1825 doi: 10.1126/science.276.5320.1821
    Xu, T., Zhu, L. P., Lü, X. M., et al., 2019. Mid- to Late-Holocene Paleoenvironmental Changes and Glacier Fluctuations Recon-structed from the Sediments of Proglacial Lake Buruo Co, Northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 517: 74–85. https://doi.org/10.1016/j.palaeo.2018.12.023
    Yao, T. D., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663–667. https://doi.org/10.1038/nclimate1580
    Zhang, J. F., Xu, B. Q., Turner, F., et al., 2017. Long-Term Glacier Melt Fluctuations over the Past 2500 yr in Monsoonal High Asia Revealed by Radiocarbon-Dated Lacustrine Pollen Concentrates. Geology, 45(4): 359–362. https://doi.org/10.1130/g38690.1
    Zou, Q., Zhou, B., Yang, T., et al., 2024. Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas. Earth Science, 49(11): 4047–4062. https://doi.org/10.3799/dqkx.2024.083 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(21) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return