Citation: | Peng Cao, Huiming Tang, Kun Fang, Jianhui Deng, Zongliang Li, Xinming Wu. Locking Effect of the Inhomogeneous Tectonic Lenticular Rock Mass in the Internal Geological Structure of the Baige Landslides. Journal of Earth Science, 2025, 36(4): 1663-1681. doi: 10.1007/s12583-025-0271-9 |
In 2018, Baige, Tibet, witnessed two consecutive large-scale landslides, causing significant damage and drawing widespread attention. From March 2011 to February 2018, the Baige landslide exhibited a 50-m displacement without complete failure, culminating in a collapse in October 2018. The mechanisms behind its resistance to failure despite substantial deformation and the influence of the complex geo-structure within the tectonic mélange belt remain unclear. To address these questions, this study utilized a multidisciplinary approach, integrating on-site geological field mapping, surface deformation monitoring, multielectrode resistivity method, and deep displacement analysis. The aim was to evaluate the impact of the intricate geo-structure within the tectonic mélange belt on the Baige landslide events. Findings reveal that the landslide's geo-structure consists of structurally fractured, mesh-like rock masses, including heterogeneous lenticular rock masses and intermittent brittle shear zones distributed around the lens-shaped rock masses. The study underscores that the inhomogeneous and weakly deformed lenticular rock masses function as natural locked segments, governing the stability of the Baige landslide. Specifically, the relatively intact and hard granodiorite porphyry play a crucial role in locking the landslide's deformation. Deep displacement analysis indicates that the brittle shear zones act as the sliding surfaces. The progressive destruction of the locked segments and the gradual penetration of brittle shear zones, driven by gravitational potential energy, contribute to the landslide occurrence. This research provides critical insights into the formation mechanisms of large-scale landslides within tectonic mélange belts.
Bellanova, J., Calamita, G., Giocoli, A., et al., 2018. Electrical Resistivity Imaging for the Characterization of the Montaguto Landslide (Southern Italy). Engineering Geology, 243: 272–281. https://doi.org/10.1016/j.enggeo.2018.07.014 |
Brideau, M. A., Yan, M., Stead, D., 2009. The Role of Tectonic Damage and Brittle Rock Fracture in the Development of Large Rock Slope Failures. Geomorphology, 103(1): 30–49. https://doi.org/10.1016/j.geomorph.2008.04.010 |
Carminati, E., Doglioni, C., 2012. Alps vs. Apennines: The Paradigm of a Tectonically Asymmetric Earth. Earth-Science Reviews, 112(1/2): 67–96. https://doi.org/10.1016/j.earscirev.2012.02.004 |
Chen, F., Gao, Y. J., Zhao, S. Y., et al., 2021. Kinematic Process and Mechanism of the Two Slope Failures at Baige Village in the Upper Reaches of the Jinsha River, China. Bulletin of Engineering Geology and the Environment, 80(4): 3475–3493. https://doi.org/10.1007/s10064-021-02146-0 |
Chen, Z., Zhou, H. F., Ye, F., et al., 2021. The Characteristics, Induced Factors, and Formation Mechanism of the 2018 Baige Landslide in Jinsha River, Southwest China. Catena, 203: 105337. https://doi.org/10.1016/j.catena.2021.105337 |
Chen, H. R., Qin, S. Q., Xue, L., et al., 2018. A Physical Model Predicting Instability of Rock Slopes with Locked Segments along a Potential Slip Surface. Engineering Geology, 242: 34–43: https://doi.org/10.1016/j.enggeo.2018.05.012 |
Crosta, G. B., Agliardi, F., Rivolta, C., et al., 2017. Long-Term Evolution and Early Warning Strategies for Complex Rockslides by Real-Time Monitoring. Landslides, 14(5): 1615–1632. https://doi.org/10.1007/s10346-017-0817-8 |
Dahal, R. K., 2014. Regional-Scale Landslide Activity and Landslide Susceptibility Zonation in the Nepal Himalaya. Environmental Earth Sciences, 71(12): 5145–5164. https://doi.org/10.1007/s12665-013-2917-7 |
Delunel, R., Hantz, D., Braucher, R., et al., 2010. Surface Exposure Dating and Geophysical Prospecting of the Holocene Lauvitel Rock Slide (French Alps). Landslides, 7(4): 393–400. https://doi.org/10.1007/s10346-010-0221-0 |
Evans, S. G., Roberts, N. J., Ischuk, A., et al., 2009. Landslides Triggered by the 1949 Khait Earthquake, Tajikistan, and Associated Loss of Life. Engineering Geology, 109(3/4): 195–212. https://doi.org/10.1016/j.enggeo.2009.08.007 |
Fan, X. M., Xu, Q., Scaringi, G., et al., 2017. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides, 14(6): 2129–2146. https://doi.org/10.1007/s10346-017-0907-7 |
Fan, X. M., Yang, F., Siva Subramanian, S., et al., 2020. Prediction of a Multi-Hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide, Jinsha River, China. Landslides, 17(1): 147–164. https://doi.org/10.1007/s10346-019-01313-5 |
Festa, A., Dilek, Y., Pini, G. A., et al., 2012. Mechanisms and Processes of Stratal Disruption and Mixing in the Development of Mélanges and Broken formations: Redefining and Classifying Mélanges. Tectonophysics, 568: 7–24. https://doi.org/10.1016/j.tecto.2012.05.021 |
Festa, A., Pini, G. A, Dilek, Y, et al., 2010. Mélanges and Mélange-Forming Processes: A Historical Overview and New Concepts. International Geology Review, 52(10/11/12): 1040–1105. https://doi.org/10.1080/00206810903557704 |
Gao, Y., Li, B., Gao, H. Y., et al., 2020. Dynamic Characteristics of High-Elevation and Long-Runout Landslides in the Emeishan Basalt Area: A Case Study of the Shuicheng "7.23" landslide in Guizhou, China. Landslides, 17(7): 1663–1677. https://doi.org/10.1007/s10346-020-01377-8 |
Glastonbury, J., Fell, R., 2010. Geotechnical Characteristics of Large Rapid Rock Slides. Canadian Geotechnical Journal, 47(1): 116–132. https://doi.org/10.1139/t09-080 |
Glen, R., 2016. Alfred Kröner, The Central Asian Orogenic Belt: Geology, Evolution, Tectonics, and Models. International Geology Review, 58(9): 1130–1131. https://doi.org/10.1080/00206814.2016.1155081 |
Hewitt, K., Gosse, J., Clague, J. J., 2011. Rock Avalanches and the Pace of Late Quaternary Development of River Valleys in the Karakoram Himalaya. GSA Bulletin, 123(9/10): 1836–1850. https://doi.org/10.1130/B30341.1 |
Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167–194. https://doi.org/10.1007/s10346-013-0436-y |
Imayama, T., Takeshita, T., Arita, K., 2010. Metamorphic P-T Profile and P-T Path Discontinuity across the Far-Eastern Nepal Himalaya: Investigation of Channel Flow Models. Journal of Metamorphic Geology, 28(5): 527–549. https://doi.org/10.1111/j.1525-1314.2010.00879.x |
Kang, E. S., Meng, H. D., Zhao, Z. X., et al., 2023. Distribution Characteristics of the Geoelectric Field in Waste Dump Slopes during the Evolution of Instability Sources under Rainfall Conditions. Applied Sciences, 13(11): 6459. https://doi.org/10.3390/app13116459 |
Kawabata, R., Imayama, T., Bose, N., et al., 2021. Tectonic Discontinuity, Partial Melting and Exhumation in the Garhwal Himalaya (Northwest India): Constrains from Spatial and Temporal Pressure-Temperature Conditions along the Bhagirathi Valley. Lithos, 404: 106488. https://doi.org/10.1016/j.lithos.2021.106488 |
Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501–547. https://doi.org/10.1016/j.gr.2013.01.004 |
Li, G. W., Kohn, B., Sandiford, M., et al., 2017. India-Asia Convergence: Insights from Burial and Exhumation of the Xigaze Fore-Arc Basin, South Tibet. Journal of Geophysical Research: Solid Earth, 122(5): 3430–3449. https://doi.org/10.1002/2017JB014080 |
Liu, C. Z., Lyu, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219–234 (in Chinese with English Abstract) |
Liu, W., Ju, N. P., Zhang, Z., et al., 2020. Simulating the Process of the Jinshajiang Landslide-Caused Disaster Chain in October 2018. Bulletin of Engineering Geology and the Environment, 79(5): 2189–2199. https://doi.org/10.1007/s10064-019-01717-6 |
Ma, X. X., Meert, J. G., Xu, Z. Q., et al., 2018. Late Triassic Intra-Oceanic Arc System within Neotethys: Evidence from Cumulate Appinite in the Gangdese Belt, Southern Tibet. Lithosphere, 10(4): 545–565. https://doi.org/10.1130/L682.1 |
Najman, Y., Jenks, D., Godin, L., et al., 2017. The Tethyan Himalayan Detrital Record Shows that India-Asia Terminal Collision Occurred by 54 Ma in the Western Himalaya. Earth and Planetary Science Letters, 459: 301-310. https://doi.org/10.1016/j.epsl.2016.11.036 |
Ouyang, C. J., An, H. C., Zhou, S., et al., 2019. Insights from the Failure and Dynamic Characteristics of Two Sequential Landslides at Baige Village along the Jinsha River, China. Landslides, 16(7): 1397–1414. https://doi.org/10.1007/s10346-019-01177-9 |
Pazzi, V., Morelli, S., Fanti, R., 2019. A Review of the Advantages and Limitations of Geophysical Investigations in Landslide Studies. International Journal of Geophysics, 2019(1): 2983087. https://doi.org/10.1155/2019/2983087 |
Perrone, A., Lapenna, V., Piscitelli, S., 2014. Electrical Resistivity Tomography Technique for Landslide investigation: A Review. Earth-Science Reviews, 135: 65–82. https://doi.org/10.1016/j.earscirev.2014.04.002 |
Rechberger, C., Fey, C., Zangerl, C., 2021. Structural Characterisation, Internal Deformation, and Kinematics of an Active Deep-Seated Rock Slide in a Valley Glacier Retreat Area. Engineering Geology, 286: 106048. https://doi.org/10.1016/j.enggeo.2021.106048 |
Ren, Z., Wang, K., Yang, K., et al., 2018. The Grain Size Distribution and Composition of the Touzhai Rock Avalanche Deposit in Yunnan, China. Engineering Geology, 234: 97–111. https://doi.org/10.1016/j.enggeo.2018.01.007 |
Riva, F., Agliardi, F., Amitrano, D., et al., 2018. Damage-Based Time-Dependent Modeling of Paraglacial to Postglacial Progressive Failure of Large Rock Slopes. Journal of Geophysical Research: Earth Surface, 123(1): 124–141. https://doi.org/10.1002/2017JF004423 |
Scholz, C. H., 1998. Earthquakes and Friction Laws. Nature, 391(6662): 37–42. https://doi.org/10.1038/34097 |
Senderak, K., Kondracka, M., Gądek, B., 2019. Postglacial Talus Slope Development Imaged by the ERT Method: Comparison of Slopes from SW Spitsbergen, Norway and Tatra Mountains, Poland. Open Geosciences, 11(1): 1084–1097. https://doi.org/10.1515/geo-2019-0084 |
Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2023. The Largest Rock Avalanche in China at Lymek, Eastern Pamir, and Its Spectacular Emplacement Landscape. Geomorphology, 421: 108521. https://doi.org/10.1016/j.geomorph.2022.108521 |
Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300–306. https://doi.org/10.1126/science.abh4455 |
Raimbourg, H., Famin, V., Palazzin, G., et al., 2017. Tertiary Evolution of the Shimanto Belt (Japan): A Large-Scale Collision in Early Miocene. Tectonics, 36(7/8): 1317–1337. https://doi.org/10.1002/2017TC004529 |
Tang, H. M., Zou, Z. X., Xiong, C. R., et al., 2015. An Evolution Model of Large Consequent Bedding Rockslides, with Particular Reference to the Jiweishan Rockslide in Southwest China. Engineering Geology, 186: 17–27. https://doi.org/10.1016/j.enggeo.2014.08.021 |
Tian, S. F., Chen, N. S., Wu, H., et al., 2020. New Insights into the Occurrence of the Baige Landslide along the Jinsha River in Tibet. Landslides, 17(5): 1207–1216. https://doi.org/10.1007/s10346-020-01351-4 |
Vick, L. M., Böhme, M., Rouyet, L., et al., 2020. Structurally Controlled Rock Slope Deformation in Northern Norway. Landslides, 17(8): 1745–1776. https://doi.org/10.1007/s10346-020-01421-7 |
Wakabayashi, J., 1992. Nappes, Tectonics of Oblique Plate Convergence, and Metamorphic Evolution Related to 140 Million Years of Continuous Subduction, Franciscan Complex, California. The Journal of Geology, 100(1): 19–40. https://doi.org/10.1086/629569 |
Wang, J. M., Rubatto, D., Zhang, J. J., 2015. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): In-Sequence Thrusting and Its Implications. Journal of Petrology, 56(9): 1677–1702. https://doi.org/10.1093/petrology/egv050 |
Wang, S. J., Li, G. H., Zhang, Q., et al., 2000. Engineering Geological Study of the Active Tectonic Region for Hydropower Development on the Jinsha River, Upstream of the Yangtze River. Acta Geologica Sinica: English Edition, 74(2): 353–361. https://doi.org/10.1111/j.1755-6724.2000.tb00474.x |
Wang, W. P., Yin, Y. P., Zhu, S. N., et al., 2020. Investigation and Numerical Modeling of the Overloading-Induced Catastrophic Rockslide Avalanche in Baige, Tibet, China. Bulletin of Engineering Geology and the Environment, 79(4): 1765–1779. https://doi.org/10.1007/s10064-019-01664-2 |
Wang, Y. F., Cheng, Q. G., Yuan, Y. Q., et al., 2020. Emplacement Mechanisms of the Tagarma Rock Avalanche on the Pamir-Western Himalayan Syntaxis of the Tibetan Plateau, China. Landslides, 17(3): 527–542. https://doi.org/10.1007/s10346-019-01298-1 |
Wei, W., Shen, J. H., Miao, Z., et al., 2012. Influence Analysis of Weathering and Altering for Physical and Mechanical Characteristics of Granite-Porphyry. Journal of Engineering Geology, 20(4): 599–606 (in Chinese with English Abstract) |
Wen, B. P., Aydin, A., Duzgoren-Aydin, N. S., et al., 2007. Residual Strength of Slip Zones of Large Landslides in the Three Gorges Area, China. Engineering Geology, 93(3/4): 82–98. https://doi.org/10.1016/j.enggeo.2007.05.006 |
Wen, D. R., Liu, D. Y., Chung, S. L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3/4): 191–201. https://doi.org/10.1016/j.chemgeo.2008.03.003 |
Whiteley, J. S., Chambers, J. E., Uhlemann, S., et al., 2019. Geophysical Monitoring of Moisture-Induced Landslides: A Review. Reviews of Geophysics, 57(1): 106–145. https://doi.org/10.1029/2018RG000603 |
Xu, Q., Fan, X. M., Huang, R. Q., et al., 2010. A Catastrophic Rockslide-Debris Flow in Wulong, Chongqing, China in 2009: Background, Characterization, and Causes. Landslides, 7(1): 75–87. https://doi.org/10.1007/s10346-009-0179-y |
Xu, Q., Zheng, G., Li, W., et al., 2018. Study on Successive Landslide Damming Events Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534–1551. https://doi.org/10.13544/j.cnki.jeg.2018-406 (in Chinese with English Abstract) |
Xue, L., Qin, S. Q., Pan, X. H., et al., 2017. A Possible Explanation of the Stair-Step Brittle Deformation Evolutionary Pattern of a Rockslide. Geomatics, Natural Hazards and Risk, 8(2): 1456–1476. https://doi.org/10.1080/19475705.2017.1345793 |
Yang, J. H., Lu, W. B., Chen, M., et al., 2013. Microseism Induced by Transient Release of in situ Stress during Deep Rock Mass Excavation by Blasting. Rock Mechanics and Rock Engineering, 46(4): 859–875. https://doi.org/10.1007/s00603-012-0308-0 |
Yang, W. T., Wang, Y. J., Wang, Y. Q., et al., 2020. Retrospective Deformation of the Baige Landslide Using Optical Remote Sensing Images. Landslides, 17(3): 659–668. https://doi.org/10.1007/s10346-019-01311-7 |
Yi, S. J., Wu, C. H., Cui, P., et al., 2022. Cause of the Baige Landslides: Long-Term Cumulative Coupled Effect of Tectonic Action and Surface Erosion. Lithosphere, 2021(Special 7): 7784535. https://doi.org/10.2113/2022/7784535 |
Yin, Y. P., Li, B., Gao, Y., et al., 2023. Geostructures, Dynamics and Risk Mitigation of High-Altitude and Long-Runout Rockslides. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 66–101. https://doi.org/10.1016/j.jrmge.2022.11.001 |
Yin, Y. P., Sun, P., Zhang, M., et al., 2011. Mechanism on Apparent Dip Sliding of Oblique Inclined Bedding Rockslide at Jiweishan, Chongqing, China. Landslides, 8(1): 49–65. https://doi.org/10.1007/s10346-010-0237-5 |
Yin, Y. P., Xing, A. G., Wang, G. H., et al., 2017. Experimental and Numerical Investigations of a Catastrophic Long-Runout Landslide in Zhenxiong, Yunnan, Southwestern China. Landslides, 14(2): 649–659. https://doi.org/10.1007/s10346-016-0729-z |
Zangerl, C., Fey, C., Prager, C., 2019. Deformation Characteristics and Multi-Slab Formation of a Deep-Seated Rock Slide in a High Alpine Environment (Bliggspitze, Austria). Bulletin of Engineering Geology and the Environment, 78(8): 6111–6130. https://doi.org/10.1007/s10064-019-01516-z |
Zeng, P., Wang, S., Sun, X. P., et al., 2022. Probabilistic Hazard Assessment of Landslide-Induced River Damming. Engineering Geology, 304: 106678. https://doi.org/10.1016/j.enggeo.2022.106678 |
Zhang, S. L., Yin, Y. P., Hu, X. W., et al., 2020. Dynamics and Emplacement Mechanisms of the Successive Baige Landslides on the Upper Reaches of the Jinsha River, China. Engineering Geology, 278: 105819. https://doi.org/10.1016/j.enggeo.2020.105819 |
Zhang, T. T., Yin, Y. P., Li, B., et al., 2023. Characteristics and Dynamic Analysis of the February 2021 Long-Runout Disaster Chain Triggered by Massive Rock and Ice Avalanche at Chamoli, Indian Himalaya. Journal of Rock Mechanics and Geotechnical Engineering, 15(2): 296–308. https://doi.org/10.1016/j.jrmge.2022.04.003 |
Zhang, Y. S., Guo, C. B., Lan, H. X., et al., 2015. Reactivation Mechanism of Ancient Giant Landslides in the Tectonically Active Zone: A Case Study in Southwest China. Environmental Earth Sciences, 74(2): 1719–1729. https://doi.org/10.1007/s12665-015-4180-6 |
Zhao, S. Y., Dai, F. C., Deng, J. H., et al., 2023. Insights into Landslide Development and Susceptibility in Extremely Complex Alpine Geoenvironments along the Western Sichuan-Tibet Engineering Corridor, China. CATENA, 227: 107105. https://doi.org/10.1016/j.catena.2023.107105 |
Zhao, S. Y., He, Z. L., Deng, J. H., et al., 2022. Giant River-Blocking Landslide Dams with Multiple Failure Sources in the Nu River and the Impact on Transient Landscape Evolution in Southeastern Tibet. Geomorphology, 413: 108357. https://doi.org/10.1016/j.geomorph.2022.108357 |
Zhou, G. G. D., Roque, P. J. C., Xie, Y. X., et al., 2020. Numerical Study on the Evolution Process of a Geohazards Chain Resulting from the Yigong Landslide. Landslides, 17(11): 2563–2576. https://doi.org/10.1007/s10346-020-01448-w |
Zhou, H. F., Wang, M., Xue, J. Y., et al., 2024a. Slide-Controlling Modes and Classification System of the Mélange High Slopes: Insight into a Disaster-Causing Mechanism of the Jinsha River Mélange Belt in the Eastern Tibetan Plateau. Bulletin of Engineering Geology and the Environment, 83(8): 328. https://doi.org/10.1007/s10064-024-03835-2 |
Zhou, H. F., Ye, F., Fu, W. X., et al., 2024b. Dynamic Effect of Landslides Triggered by Earthquake: A Case Study in Moxi Town of Luding County, China. Journal of Earth Science, 35(1): 221–234. https://doi.org/10.1007/s12583-022-1806-y |
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241–255. https://doi.org/10.1016/j.epsl.2010.11.005 |