Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Turn off MathJax
Article Contents
Huaisong Ji, Mingming Luo, Xinyang Fan, Chen Chen, Huaishui Yang, Kun Huang, Junwei Wan, Shiyi Wei, Heng Zhao. High-frequency magnesium anomalies reveal structural controls on water cycle and runoff variations in karst systems. Journal of Earth Science. doi: 10.1007/s12583-025-0306-2
Citation: Huaisong Ji, Mingming Luo, Xinyang Fan, Chen Chen, Huaishui Yang, Kun Huang, Junwei Wan, Shiyi Wei, Heng Zhao. High-frequency magnesium anomalies reveal structural controls on water cycle and runoff variations in karst systems. Journal of Earth Science. doi: 10.1007/s12583-025-0306-2

High-frequency magnesium anomalies reveal structural controls on water cycle and runoff variations in karst systems

doi: 10.1007/s12583-025-0306-2
Funds:

This research was supported by the National Natural Science Foundation of China (Grant No. 42172276) and funded by the China Scholarship Council (CSC) (Grant No. 202406410079).

  • Available Online: 25 Aug 2025
  • Understanding the mechanisms of dynamic responses of karst aquifers is challenging and crucial for sustainable groundwater management. This study innovatively establishes a hydrogeochemical tracing framework based on Mg2+ ion anomalies in a dolomite-limestone interbedded karst system. By analyzing sediment geochemistry, along with statistical analysis and high-frequency discharge and water quality data, results show that the Mg2+/Ca2+ molar ratio of water bodies significantly depends on lithology. The ratio in groundwater from dolomite areas is notably higher than that from limestone. Mg content in epikarst and soil in dolomite regions is also around three times higher. The underground river features low Mg2+ and high Ca2+ concentrations under low flow conduit, but storm events abruptly raise Mg2+ levels, turbidity, and discharge. This contradicts the traditional dilution paradigm and supports a dual-domain recharge model characterized by vertical epikarst infiltration and lateral flow within the vadose zone. Stormflow mobilizes Mg2+-rich water from dolomite epikarst and transports it via preferential pathways. Hydrograph separation reveals that stormflow through dolomite contributes up to 36% of total discharge. These findings highlight the regulatory role of lithological heterogeneity in karst hydrodynamics. The Mg2+-based tracing approach proposed here offers a sensitive natural indicator for storm-induced recharge and solute transport in complex karst systems.

     

  • loading
  • Aley, T.J., Kirkland, S.L., 2012. Down but not straight down: significance of lateral flow in the vadose zone of karst terrains. Carbonates Evaporites 27, 193–198. https://doi.org/10.1007/s13146-012-0106-5
    Bao, Y., Pang, Z., Huang, T., et al., 2022. Chemical and isotopic evidences on evaporite dissolution as the origin of high sulfate water in a karst geothermal reservoir. Applied Geochemistry 145, 105419. https://doi.org/https://doi.org/10.1016/j.apgeochem.2022.105419
    713(03)00027-0
    Bieroza, M., Acharya, S., Benisch, J., et al., 2023. Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements. Environ Sci Technol 57, 4701–4719. https://doi.org/10.1021/acs.est.2c07798
    Brkić, Ž., Kuhta, M., Hunjak, T., 2018. Groundwater flow mechanism in the well-developed karst aquifer system in the western Croatia: Insights from spring discharge and water isotopes. Catena 161, 14–26. https://doi.org/10.1016/j.catena.2017.10.011
    Çallı, K.Ö., Chiogna, G., Bittner, D., et al., 2025. Karst Water Resources in a Changing World: Review of Solute Transport Modeling Approaches. Reviews of Geophysics 63. https://doi.org/10.1029/2023RG000811
    Cano-Paoli, K., Chiogna, G., Bellin, A., 2019. Convenient use of electrical conductivity measurements to investigate hydrological processes in Alpine headwaters. Science of the Total Environment 685, 37–49. https://doi.org/10.1016/j.scitotenv.2019.05.166
    Chang, Y., Hartmann, A., Liu, L., et al., 2021. Identifying More Realistic Model Structures by Electrical Conductivity Observations of the Karst Spring. Water Resour Res 57, e2020WR028587. https://doi.org/https://doi.org/10.1029/2020WR028587
    Chen, J., Luo, M., Wan, L., et al., 2023. Accumulation, conversion and storage of solute from sinkholes to karst spring under concentrated recharge conditions. J Hydrol 620, 129396. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129396
    De Filippi, F.M., Iacurto, S., Grelle, G., et al., 2021. Magnesium as environmental tracer for karst spring baseflow/overflow assessment—a case study of the pertuso karst spring (Latium region, Italy). Water 13. https://doi.org/10.3390/w13010093
    De Filippi, F.M., Sappa, G., 2023. Magnesium and groundwater flow relationship in karst aquifers: a tool for exploitation management of springs. Acque Sotterranee - Italian Journal of Groundwater 12, 49–57. https://doi.org/10.7343/as-2023-683
    Delbart, C., Valdes, D., Barbecot, F., et al., 2014. Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method. J Hydrol 511, 580–588. https://doi.org/10.1016/j.jhydrol.2014.02.008
    Duan, Y., Gao, X., Li, C., et al., 2025. Combining hydrodynamics, geochemical and multiple isotopic tracers to understand the hydrogeological functioning of karst groundwater system in Jinci, northern China. J Hydrol (Amst) 648, 132375. https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.132375
    Fan, X., Goeppert, N., Goldscheider, N., 2023. Quantifying the historic and future response of karst spring discharge to climate variability and change at a snow-influenced temperate catchment in central Europe. Hydrogeology J, 31(8), 2213-2229. https://doi.org/10.1007/s10040-023-02703-9
    Fernández-Ortega, J., Barberá, J.A., Andreo, B., 2024. Real-time karst groundwater monitoring and bacterial analysis as early warning strategies for drinking water supply contamination. Science of The Total Environment 912, 169539. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.169539
    Floury, P., Bouchez, J., Druhan, J.L., et al., 2024. Linking Dynamic Water Storage and Subsurface Geochemical Structure Using High-Frequency Concentration-Discharge Records. Water Resour Res 60, e2022WR033999. https://doi.org/https://doi.org/10.1029/2022WR033999
    Frank, S., Fahrmeier, N., Goeppert, N., et al., 2022. High-resolution multi-parameter monitoring of microbial water quality and particles at two alpine karst springs as a basis for an early-warning system. Hydrogeol J 30, 2285–2298. https://doi.org/10.1007/s10040-022-02556-8
    Frank, S., Goeppert, N., Ohmer, M., et al., 2019. Sulfate variations as a natural tracer for conduit-matrix interaction in a complex karst aquifer. Hydrol Process 33, 1292–1303. https://doi.org/10.1002/hyp.13400
    Gil-Márquez, J.M., Andreo, B., Mudarra, M., 2022. Studying hydrogeochemical processes to understand hydrodiversity and the related natural and cultural heritage. The case of Los Hoyos area (South Spain). Catena 216. https://doi.org/10.1016/j.catena.2022.106422
    Gil-Márquez, J.M., Sültenfuß, J., Andreo, B., et al., 2020. Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings. J Hydrol 580, 124263. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124263
    Goldscheider, N., Chen, Z., Auler, A.S., et al., 2020. Global distribution of carbonate rocks and karst water resources. Hydrogeol J 28, 1661–1677. https://doi.org/10.1007/s10040-020-02139-5
    Gran, G., 1952. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77, 661–671.
    Guo, F., Jiang, G., Yuan, D., et al., 2013. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ Earth Sci 69, 2427–2435. https://doi.org/10.1007/s12665-012-2070-8
    Guo, X., Chen, Q., Huang, H., et al., 2022. Water source identification and circulation characteristics of intermittent karst spring based on hydrochemistry and stable isotope—An example from Southern China. Applied Geochemistry 141, 105309. https://doi.org/https://doi.org/10.1016/j.apgeochem.2022.105309
    Guo, X., Luo, M., Li, J., et al., 2025. Dual-tracer analysis of stable isotopes and thermal signals to quantify groundwater residence times in karst rhythmic spring systems. J Hydrol 133493. https://doi.org/10.1016/J.JHYDROL.2025.133493
    Hartmann, A., Goldscheider, N., Wagener, T., et al., 2014. Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics. https://doi.org/10.1002/2013RG000443
    Hartmann, A., Jasechko, S., Gleeson, T., et al., 2021. Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Proceedings of the National Academy of Sciences 118, e2024492118. https://doi.org/10.1073/pnas.2024492118
    He, J., Zhang, K., Cao, Y., et al., 2024. Unraveling soil filling and transport in fissures on karst slopes using multiple tracers. Catena 240. https://doi.org/10.1016/j.catena.2024.108003
    Herman, J.S., White, W.B., 1985. Dissolution kinetics of dolomite: Effects of lithology and fluid flow velocity. Geochim Cosmochim Acta 49, 2017–2026. https://doi.org/https://doi.org/10.1016/0016-7037(85)90060-2
    Huang, J., Ma, C., Sun, Y., 2021. 2D Magnetotelluric forward modelling for deep buried water-rich fault and its application. J Appl Geophy 192, 104403. https://doi.org/10.1016/J.JAPPGEO.2021.104403
    Ji, H., Luo, M., Yin, M., et al., 2022. Storage and release of conservative solute between karst conduit and fissures using a laboratory analog. J Hydrol 612, 128228. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.128228
    Ji, H., Chiogna, G., Chang, W., et al., 2025a. Investigating the structure of a multiple karst aquifer system and its hydrological process response using high-resolution multi-tracer data. J Hydrol 657, 133152. https://doi.org/10.1016/J.JHYDROL.2025.133152
    Ji H, Chiogna G, Richieri B, et al., 2025b. High-frequency dual-tracer approach to identify contaminant transport pathways and quantify migration behaviors in karst underground river system. J Hydrol (Amst) 133935. https://doi.org/10.1016/J.JHYDROL.2025.133935
    Jukić, D., Denić-Jukić, V., 2023. An alternative approach to investigation of sediment transport through a karst aquifer. J Hydrol 625, 130037. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130037
    Kummu, M., Guillaume, J.H.A., de Moel, H., et al., 2016. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci Rep 6, 38495. https://doi.org/10.1038/srep38495
    Li, J., Qi, Y., Zhong, Y., et al., 2016. Karst aquifer characterization using storm event analysis for Black Dragon springshed, Beijing, China. Catena 145, 30–38. https://doi.org/10.1016/j.catena.2016.05.019
    Liang, J., Cui, X., Wen, L., et al., 2022. Comparison of soil calcium and magnesium fractions transport in classic karst and non-karst region. Carsologica Sinica 02, 220–227. https://doi.org/doi: CNKI:SUN:ZGYR.0.2022-02-006
    Lorette, G., Lastennet, R., Peyraube, N., et al., 2018. Groundwater-flow characterization in a multilayered karst aquifer on the edge of a sedimentary basin in western France. J Hydrol 566, 137–149. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.09.017
    Luhmann, A.J., Covington, M.D., Myre, J.M., et al., 2015. Thermal damping and retardation in karst conduits. Hydrol. Earth Syst. Sci. 19, 137–157. https://doi.org/10.5194/hess-19-137-2015
    Luo, L., Liang, X., Luo, M., et al., 2022. Characterizing the hierarchical groundwater flow systems in Karstic Xiangxi River Basin, West Hubei, Central China. Applied Geochemistry 143, 105371. https://doi.org/10.1016/J.APGEOCHEM.2022.105371
    Luo, M., Wan, L., Liao, C., et al., 2023. Geographic and transport controls of temperature response in karst springs. J Hydrol 623, 129850. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129850
    Martín-Rodríguez, J.F., Mudarra, M., De la Torre, B., et al., 2023. Towards a better understanding of time-lags in karst aquifers by combining hydrological analysis tools and dye tracer tests. Application to a binary karst aquifer in southern Spain. J Hydrol 621, 129643. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129643
    Meng, Q., Xing, L., Liu, L., et al., 2021. Time-lag characteristics of the response of karst springs to Rainwater in the northern China. Environ Earth Sci 80, 348. https://doi.org/10.1007/s12665-021-09640-4
    Morse, J.W., Arvidson, R.S., 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58, 51–84. https://doi.org/https://doi.org/10.1016/S0012-8252(01)00083-6
    117-1
    Mueller, Y.K., Goldscheider, N., Eiche, E., et al., 2023. From cave to spring: Understanding transport of suspended sediment particles in a fully phreatic karst conduit using particle analysis and geochemical methods. Hydrol Process 37. https://doi.org/10.1002/hyp.14979
    Olarinoye, T., Gleeson, T., Marx, V., et al., 2020. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Sci Data 7, 59. https://doi.org/10.1038/s41597-019-0346-5
    Pinder, G.F., Jones, J.F., 1969. Determination of the ground-water component of peak discharge from the chemistry of total runoff. Water Resour Res 5, 438–445. https://doi.org/https://doi.org/10.1029/WR005i002p00438
    Ravbar, N., Mulec, J., Mayaud, C., et al., 2023. A comprehensive early warning system for karst water sources contamination risk, case study of the Unica springs, SW Slovenia. Science of the Total Environment 885. https://doi.org/10.1016/j.scitotenv.2023.163958
    Ren, K., Pan, X., Peng, C., et al., 2023. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer tests. J Environ Manage 342, 118099. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.118099
    Richieri, B., Bittner, D., Hartmann, A., et al., 2023. Using continuous electrical conductivity measurements to derive major solute concentrations in karst systems. Hydrol Process 37, e14929. https://doi.org/https://doi.org/10.1002/hyp.14929
    Sappa, G., Ferranti, F., De Filippi, F.M., et al., 2017. Mg2+-based method for the Pertuso spring discharge evaluation. Water 9. https://doi.org/10.3390/w9010067
    Schiperski, F., 2018. Turbidity as an Indicator of Contamination in Karst Springs: A Short Review, in: White, W.B., Herman, J.S., Herman, E.K., Rutigliano, M. (Eds.), Karst Groundwater Contamination and Public Health. Springer International Publishing, Cham, pp. 127–139.
    Shi, J., Jiang, G., Sun, Z., et al., 2022. Dissolved organic matter tracers reveal contrasting characteristics in the concentrated flow zone and matrix-with-fractures zone of a sulfate-contaminated karst aquifer in South China. Applied Geochemistry 146, 105431. https://doi.org/https://doi.org/10.1016/j.apgeochem.2022.105431
    694(79)90164-1
    Stephens, D.B.., 2018. Vadose zone hydrology. CRC, Lewis Publishers.
    Stevanović, Z., 2019. Karst waters in potable water supply: a global scale overview. Environ Earth Sci 78, 662. https://doi.org/10.1007/s12665-019-8670-9
    Toran, L., Reisch, C.E., 2013. Using stormwater hysteresis to characterize karst spring discharge. Groundwater 51, 575–587. https://doi.org/10.1111/j.1745-6584.2012.00984.x
    Tran, D.A., Goeppert, N., Goldscheider, N., 2023. Use of major ion chemistry and trace and rare earth elements to characterize hydraulic relations, mixing processes and water–rock interaction in the Dong Van karst aquifer system, Northern Vietnam. Hydrogeol J 31, 1735–1753. https://doi.org/10.1007/s10040-023-02689-4
    Van Zweel, K.N., Gourdol, L., Iffly, J.F., et al., 2024. One year of high frequency monitoring of groundwater physico-chemical parameters in the Weierbach Experimental Catchment, Luxembourg. https://doi.org/10.5194/essd-2024-259
    Verbovšek, T., Kanduč, T., 2016. Isotope Geochemistry of Groundwater from Fractured Dolomite Aquifers in Central Slovenia. Aquat Geochem 22, 131–151. https://doi.org/10.1007/s10498-015-9281-z
    Veress, M., 2024. Epikarst. pp. 1–19. https://doi.org/10.1007/978-3-031-69936-8_1
    Wang, Y., Zhai, G., Lu, Y., et al., 2019. Sedimentary lithofacies characteristics and sweet-spot interval characterization of the Sinian Doushantuo Formation in Upper Yangtze Platform, South China. China Geology 2, 261–275. https://doi.org/https://doi.org/10.31035/cg2018119
    Wu, P., Tang, C., Zhu, L., et al., 2009. Hydrogeochemical characteristics of surface water and groundwater in the karst basin, southwest China. Hydrol Process 23, 2012–2022. https://doi.org/10.1002/hyp.7332
    Yang, C.Y., Nguyen, D.Q., Ngo, H.T.T., et al., 2022. Increases in Ca/Mg ratios caused the increases in the mobile fractions of Cr and Ni in serpentinite-derived soils in humid Asia. Catena 216. https://doi.org/10.1016/j.catena.2022.106418
    Yang, P., Yuan, D., Yuan, W., et al., 2010. Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA. Chinese Science Bulletin 55, 1412–1422. https://doi.org/10.1007/s11434-010-0083-9
    Zhang, D., Long, X., Xue, J., et al., 2012. The data processing method and software development for EH-4 system(In Chinese). Progress in Geophysics 27, 363–369.
    Zhao, H., Zhou, H., Huang, K., et al., 2024. Epikarst Controls of Runoff Composition in Subterranean Stream After Rainstorm Events. Hydrol Process 38. https://doi.org/10.1002/hyp.15305
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(43) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return