Aley, T.J., Kirkland, S.L., 2012. Down but not straight down: significance of lateral flow in the vadose zone of karst terrains. Carbonates Evaporites 27, 193–198. https://doi.org/10.1007/s13146-012-0106-5 |
Bao, Y., Pang, Z., Huang, T., et al., 2022. Chemical and isotopic evidences on evaporite dissolution as the origin of high sulfate water in a karst geothermal reservoir. Applied Geochemistry 145, 105419. https://doi.org/https://doi.org/10.1016/j.apgeochem.2022.105419 |
713(03)00027-0 |
Bieroza, M., Acharya, S., Benisch, J., et al., 2023. Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements. Environ Sci Technol 57, 4701–4719. https://doi.org/10.1021/acs.est.2c07798 |
Brkić, Ž., Kuhta, M., Hunjak, T., 2018. Groundwater flow mechanism in the well-developed karst aquifer system in the western Croatia: Insights from spring discharge and water isotopes. Catena 161, 14–26. https://doi.org/10.1016/j.catena.2017.10.011 |
Çallı, K.Ö., Chiogna, G., Bittner, D., et al., 2025. Karst Water Resources in a Changing World: Review of Solute Transport Modeling Approaches. Reviews of Geophysics 63. https://doi.org/10.1029/2023RG000811 |
Cano-Paoli, K., Chiogna, G., Bellin, A., 2019. Convenient use of electrical conductivity measurements to investigate hydrological processes in Alpine headwaters. Science of the Total Environment 685, 37–49. https://doi.org/10.1016/j.scitotenv.2019.05.166 |
Chang, Y., Hartmann, A., Liu, L., et al., 2021. Identifying More Realistic Model Structures by Electrical Conductivity Observations of the Karst Spring. Water Resour Res 57, e2020WR028587. https://doi.org/https://doi.org/10.1029/2020WR028587 |
Chen, J., Luo, M., Wan, L., et al., 2023. Accumulation, conversion and storage of solute from sinkholes to karst spring under concentrated recharge conditions. J Hydrol 620, 129396. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129396 |
De Filippi, F.M., Iacurto, S., Grelle, G., et al., 2021. Magnesium as environmental tracer for karst spring baseflow/overflow assessment—a case study of the pertuso karst spring (Latium region, Italy). Water 13. https://doi.org/10.3390/w13010093 |
De Filippi, F.M., Sappa, G., 2023. Magnesium and groundwater flow relationship in karst aquifers: a tool for exploitation management of springs. Acque Sotterranee - Italian Journal of Groundwater 12, 49–57. https://doi.org/10.7343/as-2023-683 |
Delbart, C., Valdes, D., Barbecot, F., et al., 2014. Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method. J Hydrol 511, 580–588. https://doi.org/10.1016/j.jhydrol.2014.02.008 |
Duan, Y., Gao, X., Li, C., et al., 2025. Combining hydrodynamics, geochemical and multiple isotopic tracers to understand the hydrogeological functioning of karst groundwater system in Jinci, northern China. J Hydrol (Amst) 648, 132375. https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.132375 |
Fan, X., Goeppert, N., Goldscheider, N., 2023. Quantifying the historic and future response of karst spring discharge to climate variability and change at a snow-influenced temperate catchment in central Europe. Hydrogeology J, 31(8), 2213-2229. https://doi.org/10.1007/s10040-023-02703-9 |
Fernández-Ortega, J., Barberá, J.A., Andreo, B., 2024. Real-time karst groundwater monitoring and bacterial analysis as early warning strategies for drinking water supply contamination. Science of The Total Environment 912, 169539. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.169539 |
Floury, P., Bouchez, J., Druhan, J.L., et al., 2024. Linking Dynamic Water Storage and Subsurface Geochemical Structure Using High-Frequency Concentration-Discharge Records. Water Resour Res 60, e2022WR033999. https://doi.org/https://doi.org/10.1029/2022WR033999 |
Frank, S., Fahrmeier, N., Goeppert, N., et al., 2022. High-resolution multi-parameter monitoring of microbial water quality and particles at two alpine karst springs as a basis for an early-warning system. Hydrogeol J 30, 2285–2298. https://doi.org/10.1007/s10040-022-02556-8 |
Frank, S., Goeppert, N., Ohmer, M., et al., 2019. Sulfate variations as a natural tracer for conduit-matrix interaction in a complex karst aquifer. Hydrol Process 33, 1292–1303. https://doi.org/10.1002/hyp.13400 |
Gil-Márquez, J.M., Andreo, B., Mudarra, M., 2022. Studying hydrogeochemical processes to understand hydrodiversity and the related natural and cultural heritage. The case of Los Hoyos area (South Spain). Catena 216. https://doi.org/10.1016/j.catena.2022.106422 |
Gil-Márquez, J.M., Sültenfuß, J., Andreo, B., et al., 2020. Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings. J Hydrol 580, 124263. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124263 |
Goldscheider, N., Chen, Z., Auler, A.S., et al., 2020. Global distribution of carbonate rocks and karst water resources. Hydrogeol J 28, 1661–1677. https://doi.org/10.1007/s10040-020-02139-5 |
Gran, G., 1952. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77, 661–671. |
Guo, F., Jiang, G., Yuan, D., et al., 2013. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ Earth Sci 69, 2427–2435. https://doi.org/10.1007/s12665-012-2070-8 |
Guo, X., Chen, Q., Huang, H., et al., 2022. Water source identification and circulation characteristics of intermittent karst spring based on hydrochemistry and stable isotope—An example from Southern China. Applied Geochemistry 141, 105309. https://doi.org/https://doi.org/10.1016/j.apgeochem.2022.105309 |
Guo, X., Luo, M., Li, J., et al., 2025. Dual-tracer analysis of stable isotopes and thermal signals to quantify groundwater residence times in karst rhythmic spring systems. J Hydrol 133493. https://doi.org/10.1016/J.JHYDROL.2025.133493 |
Hartmann, A., Goldscheider, N., Wagener, T., et al., 2014. Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics. https://doi.org/10.1002/2013RG000443 |
Hartmann, A., Jasechko, S., Gleeson, T., et al., 2021. Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Proceedings of the National Academy of Sciences 118, e2024492118. https://doi.org/10.1073/pnas.2024492118 |
He, J., Zhang, K., Cao, Y., et al., 2024. Unraveling soil filling and transport in fissures on karst slopes using multiple tracers. Catena 240. https://doi.org/10.1016/j.catena.2024.108003 |
Herman, J.S., White, W.B., 1985. Dissolution kinetics of dolomite: Effects of lithology and fluid flow velocity. Geochim Cosmochim Acta 49, 2017–2026. https://doi.org/https://doi.org/10.1016/0016-7037(85)90060-2 |
Huang, J., Ma, C., Sun, Y., 2021. 2D Magnetotelluric forward modelling for deep buried water-rich fault and its application. J Appl Geophy 192, 104403. https://doi.org/10.1016/J.JAPPGEO.2021.104403 |
Ji, H., Luo, M., Yin, M., et al., 2022. Storage and release of conservative solute between karst conduit and fissures using a laboratory analog. J Hydrol 612, 128228. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.128228 |
Ji, H., Chiogna, G., Chang, W., et al., 2025a. Investigating the structure of a multiple karst aquifer system and its hydrological process response using high-resolution multi-tracer data. J Hydrol 657, 133152. https://doi.org/10.1016/J.JHYDROL.2025.133152 |
Ji H, Chiogna G, Richieri B, et al., 2025b. High-frequency dual-tracer approach to identify contaminant transport pathways and quantify migration behaviors in karst underground river system. J Hydrol (Amst) 133935. https://doi.org/10.1016/J.JHYDROL.2025.133935 |
Jukić, D., Denić-Jukić, V., 2023. An alternative approach to investigation of sediment transport through a karst aquifer. J Hydrol 625, 130037. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.130037 |
Kummu, M., Guillaume, J.H.A., de Moel, H., et al., 2016. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci Rep 6, 38495. https://doi.org/10.1038/srep38495 |
Li, J., Qi, Y., Zhong, Y., et al., 2016. Karst aquifer characterization using storm event analysis for Black Dragon springshed, Beijing, China. Catena 145, 30–38. https://doi.org/10.1016/j.catena.2016.05.019 |
Liang, J., Cui, X., Wen, L., et al., 2022. Comparison of soil calcium and magnesium fractions transport in classic karst and non-karst region. Carsologica Sinica 02, 220–227. https://doi.org/doi: CNKI:SUN:ZGYR.0.2022-02-006 |
Lorette, G., Lastennet, R., Peyraube, N., et al., 2018. Groundwater-flow characterization in a multilayered karst aquifer on the edge of a sedimentary basin in western France. J Hydrol 566, 137–149. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.09.017 |
Luhmann, A.J., Covington, M.D., Myre, J.M., et al., 2015. Thermal damping and retardation in karst conduits. Hydrol. Earth Syst. Sci. 19, 137–157. https://doi.org/10.5194/hess-19-137-2015 |
Luo, L., Liang, X., Luo, M., et al., 2022. Characterizing the hierarchical groundwater flow systems in Karstic Xiangxi River Basin, West Hubei, Central China. Applied Geochemistry 143, 105371. https://doi.org/10.1016/J.APGEOCHEM.2022.105371 |
Luo, M., Wan, L., Liao, C., et al., 2023. Geographic and transport controls of temperature response in karst springs. J Hydrol 623, 129850. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129850 |
Martín-Rodríguez, J.F., Mudarra, M., De la Torre, B., et al., 2023. Towards a better understanding of time-lags in karst aquifers by combining hydrological analysis tools and dye tracer tests. Application to a binary karst aquifer in southern Spain. J Hydrol 621, 129643. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129643 |
Meng, Q., Xing, L., Liu, L., et al., 2021. Time-lag characteristics of the response of karst springs to Rainwater in the northern China. Environ Earth Sci 80, 348. https://doi.org/10.1007/s12665-021-09640-4 |
Morse, J.W., Arvidson, R.S., 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58, 51–84. https://doi.org/https://doi.org/10.1016/S0012-8252(01)00083-6 |
117-1 |
Mueller, Y.K., Goldscheider, N., Eiche, E., et al., 2023. From cave to spring: Understanding transport of suspended sediment particles in a fully phreatic karst conduit using particle analysis and geochemical methods. Hydrol Process 37. https://doi.org/10.1002/hyp.14979 |
Olarinoye, T., Gleeson, T., Marx, V., et al., 2020. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Sci Data 7, 59. https://doi.org/10.1038/s41597-019-0346-5 |
Pinder, G.F., Jones, J.F., 1969. Determination of the ground-water component of peak discharge from the chemistry of total runoff. Water Resour Res 5, 438–445. https://doi.org/https://doi.org/10.1029/WR005i002p00438 |
Ravbar, N., Mulec, J., Mayaud, C., et al., 2023. A comprehensive early warning system for karst water sources contamination risk, case study of the Unica springs, SW Slovenia. Science of the Total Environment 885. https://doi.org/10.1016/j.scitotenv.2023.163958 |
Ren, K., Pan, X., Peng, C., et al., 2023. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer tests. J Environ Manage 342, 118099. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.118099 |
Richieri, B., Bittner, D., Hartmann, A., et al., 2023. Using continuous electrical conductivity measurements to derive major solute concentrations in karst systems. Hydrol Process 37, e14929. https://doi.org/https://doi.org/10.1002/hyp.14929 |
Sappa, G., Ferranti, F., De Filippi, F.M., et al., 2017. Mg2+-based method for the Pertuso spring discharge evaluation. Water 9. https://doi.org/10.3390/w9010067 |
Schiperski, F., 2018. Turbidity as an Indicator of Contamination in Karst Springs: A Short Review, in: White, W.B., Herman, J.S., Herman, E.K., Rutigliano, M. (Eds.), Karst Groundwater Contamination and Public Health. Springer International Publishing, Cham, pp. 127–139. |
Shi, J., Jiang, G., Sun, Z., et al., 2022. Dissolved organic matter tracers reveal contrasting characteristics in the concentrated flow zone and matrix-with-fractures zone of a sulfate-contaminated karst aquifer in South China. Applied Geochemistry 146, 105431. https://doi.org/https://doi.org/10.1016/j.apgeochem.2022.105431 |
694(79)90164-1 |
Stephens, D.B.., 2018. Vadose zone hydrology. CRC, Lewis Publishers. |
Stevanović, Z., 2019. Karst waters in potable water supply: a global scale overview. Environ Earth Sci 78, 662. https://doi.org/10.1007/s12665-019-8670-9 |
Toran, L., Reisch, C.E., 2013. Using stormwater hysteresis to characterize karst spring discharge. Groundwater 51, 575–587. https://doi.org/10.1111/j.1745-6584.2012.00984.x |
Tran, D.A., Goeppert, N., Goldscheider, N., 2023. Use of major ion chemistry and trace and rare earth elements to characterize hydraulic relations, mixing processes and water–rock interaction in the Dong Van karst aquifer system, Northern Vietnam. Hydrogeol J 31, 1735–1753. https://doi.org/10.1007/s10040-023-02689-4 |
Van Zweel, K.N., Gourdol, L., Iffly, J.F., et al., 2024. One year of high frequency monitoring of groundwater physico-chemical parameters in the Weierbach Experimental Catchment, Luxembourg. https://doi.org/10.5194/essd-2024-259 |
Verbovšek, T., Kanduč, T., 2016. Isotope Geochemistry of Groundwater from Fractured Dolomite Aquifers in Central Slovenia. Aquat Geochem 22, 131–151. https://doi.org/10.1007/s10498-015-9281-z |
Veress, M., 2024. Epikarst. pp. 1–19. https://doi.org/10.1007/978-3-031-69936-8_1 |
Wang, Y., Zhai, G., Lu, Y., et al., 2019. Sedimentary lithofacies characteristics and sweet-spot interval characterization of the Sinian Doushantuo Formation in Upper Yangtze Platform, South China. China Geology 2, 261–275. https://doi.org/https://doi.org/10.31035/cg2018119 |
Wu, P., Tang, C., Zhu, L., et al., 2009. Hydrogeochemical characteristics of surface water and groundwater in the karst basin, southwest China. Hydrol Process 23, 2012–2022. https://doi.org/10.1002/hyp.7332 |
Yang, C.Y., Nguyen, D.Q., Ngo, H.T.T., et al., 2022. Increases in Ca/Mg ratios caused the increases in the mobile fractions of Cr and Ni in serpentinite-derived soils in humid Asia. Catena 216. https://doi.org/10.1016/j.catena.2022.106418 |
Yang, P., Yuan, D., Yuan, W., et al., 2010. Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA. Chinese Science Bulletin 55, 1412–1422. https://doi.org/10.1007/s11434-010-0083-9 |
Zhang, D., Long, X., Xue, J., et al., 2012. The data processing method and software development for EH-4 system(In Chinese). Progress in Geophysics 27, 363–369. |
Zhao, H., Zhou, H., Huang, K., et al., 2024. Epikarst Controls of Runoff Composition in Subterranean Stream After Rainstorm Events. Hydrol Process 38. https://doi.org/10.1002/hyp.15305 |