Adam, J. and Green, T., 2006. Trace element partitioning between mica- and amphibole- bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152(1):1–17. |
Barry, T.L. and Kent, R.W., 1998. Cenozoic magmatism in Mongolia and the origin of central and east Asian basalts. Washington: American Geophysical Union, 347–364. |
Blevin, P.L., 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: implications for gold-rich ore systems. Resource Geology, 54: 241–252. |
Boynton, W.V., 1984. Geochemistry of the rare earth elements, meteorite studies. In Rare Earth Element Geochemistry (ed. P Henderson), pp. 63–114. Amsterdam: Elsevier. |
Burnham, C.W., 1997, Magmas and hydrothermal fluids, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, 3nd ed.: New York, Wiley, p. 63–123. |
Chang, Z.S., Shu, Q.H., Meinert, L.D., 2019. Skarn deposits of China. Soc. Economic Geology Special. Publication, 22:189–234. |
Chen, X., Liu, J.J., Zhang, Q.B., Yang, Z.H., Yang, L.B. and Wu, J., 2014. Characteristics of Hf isotopes and zircon U-Pb ages of granites in the Cuihongshan iron polymetallic deposit, Heilongjiang and their geologic implications. Bulletin of Mineralogy, Petrology and Geochenistry, 33, 636–44 (in Chinese with English Abstract). |
Chiaradia, M., 2020. Gold endowments of porphyry deposits controlled by precipitation effificiency. Nature Communication, 11, 248. |
Chou, I., 1978. Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor. American Mineralogist, 63(7–8): 690–703. |
Duggen, S., Hoernle, K., Van, Den, Bogaard, P., Garbe-Schönberg, D., 2005. Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology, 46(6):1155–1201. |
Eugster, H.P. and Wones, D.R., 1962. Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3(1): 82–125. |
Fei, X.H., Zhang, Z.C., Cheng, Z.G., and Wilde, S.A., 2018. Highly differentiated magmas linked with polymetallic mineralization: A case study from the Cuihongshan granitic intrusions, Lesser Xing'an Range, NE China. Lithos, 302–303, 158–177. |
Ferry, J.M. and Watson, E. B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile ther mometers. Contributions to Mineralogy and Petrology, 154, 429–437. |
Foster, M.D., 1960. In: Interpretation of the Composition of Trioctahedral Micas. United States Government Printing Office, Washington, pp. 1–49. |
Fuertes, F.M., Martin, I.A., Garcia, N.J., Maldonado, C. and Varela, A., 2000. Preliminary mineralogical and petrological study of the Ortosa Au-Bi-Te ore deposit: A reduced gold skarn in the northern part of the Rio Narcea gold belt, Asturias, Spain. Journal of Geochemical Exploration, 71: 177–190. |
Han, J.L., Wang, Q.H., Sun, J.G., Men, L, J., Chai, P., Zhao, K.Q. and Ren, L., 2015. Zircon U--Pb dating and magmatic evolution history tracingof Late Triassic--Early Jurassic granitic complex in Jinchang Cu-Au deposit area, eastern Heilongjiang. Global Geology, 34(4), 938–950 (in Chinese with English Abstract). |
Han, J.L., Sun, J.G., Liu, Y., Ren, L., Wang, C.S., Zhang, X.T., He, Y.P., Yu, R.D. and Lu, Q., 2019. Jurassic granitic magmatism in the lesser Xing’an-Zhangguangcai ranges of NE China: The Dong’an example. International Geology Review, 61, 2143–2163. |
Henry, D. J., Guidotti, C. V., & Thomson, J. A., 2005. The Ti–saturation surface for low–to–medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3), 316–328. |
Holland, T.J.B., Powell, R., 2000. A program to calculate activities of mineral end members from chemical analyses (usually determined by electron microprobe). http://www.esc.cam.ac.uk/astaff/holland/ax.html. |
Hu, X.L., Ding, Z.J., He, M.C., Yao, S.Z., Zhu, B.P., Shen, J. and Chen, B., 2014a. Two epochs of magmatism and metallogeny in the Cuihongshan Fe-polymetallic deposit, Heilongjiang Province, NE China: Constrains from U-Pb and Re-Os geochronology and Lu-Hf isotopes. Journal of Geochemical Exploration, 143, 116–126. |
Hu, X.L., Ding, Z.J., He, M.C., Yao, S.Z., Zhu, B.P., Shen, J. and Chen, B., 2014b. A porphyry-skarn metallogenic system in the Lesser Xing'an Range, NE China: Implications from U-Pb and Re-Os geochronology and Sr-Nd-Hf isotopes of the Luming Mo and Xulaojiugou Pb-Zn deposits. Journal of Asian Earth Sciences, 90:88–100. |
Huang, M.L., Zhu, J.J., Chiaradia, M., Hu, R.Z., Xu, L.L., Bi, X.W., 2023. Apatite volatile contents of porphyry Cu deposits controlled by depth-related fluid exsolution processes. Economic Geology, 118, 1201–1217. |
Huang, M.L., Bi, X.W., Hu, R.Z., Chiaradia, M., Zhu, J.J., Xu, L.L., Yang, Z.Y., 2024. Linking porphyry Cu formation to tectonic change in postsubduction settings: A case study from the giant Yulong belt, eastern Tibet. Economic Geology, 119, 279–304. |
Huebner, J.S. and Sato, M., 1970. The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers. American Mineralogist, 55(5–6): 934–952. |
Jiang, H., Jiang, S.Y., Li, W.Q., Zhao, K.D., Peng, N.J., 2018. Highly fractionated Jurassic I-type granites and related tungsten mineralization in the Shirenzhang deposit, northern Guangdong, South China: evidence from cassiterite and zircon U-Pb ages, geochemistry and Sr-Nd-Pb-Hf isotopes. Lithos, 312:186–203. |
Kumar, S., Pathak, M., 2010. Mineralogy and geochemistry of biotites from Proterozoic granitiods of western Arunachal Himalaya: Evidence of bimodal granitogeny and tectonic affinity. Journal of Geological Society of India, 75(5):715–730. |
Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N., Whittaker, E.J.W., 2004. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Eur. J. Mineral. 16, 191–196. |
Leveille, R.A., Newberry, R.J., and Bull, K.F., 1988, An oxidation state-alkalinity diagram for discriminating some gold-favorable plutons: An empirical and phenomenalogical approach: Geological Society of America Program with Abstracts, v. 20, p. A142. |
Li, W.K., Cheng, Y.Q. and Yang, Z.M., 2019. Geo-fO2: integrated software for analysis of magmatic oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20,2542–55. |
Li, X.H., Qi, C.S., Liu, Y., Liang, X.R., Tu, X.L., Xie, L.W. and Yang, Y.H., 2005. Petrogenesis of the neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios: Chinese Science Bulletin, 50,2481–6 (in Chinese with English Abstract). |
Liang, S.S., Zhao, Z.H., Li, C.L., Yin, Y.C., Li, H.N. and Zhou, J.Z., 2024. Age and petrogenesis of ore–forming volcanic–subvolcanic rocks in the Yidonglinchang Au deposit, Lesser Xing’an Range: Implications for late Mesozoic Au mineralization in NE China, Ore Geology Reviews, 165, 105875. |
Liang, X., Wang, F.Y., Zhang, L., Zhou, T.F., Fan, Y., Guo, X.Z. and Zhang, J.W., 2024. Separation of iron and copper in skarn deposits from the Yueshan ore field, eastern China: The control of magma physicochemical conditions. Ore Geology Reviews, 174, 106316. |
Lightfoot, P.C., Hawkesworth, C.J. and Sethna, S.F., 1987. Petrogenesis of rhyolites and trachytes from the Deccan Trap: Sr, Nd and Pb isotope and trace element evidence. Contributions to Mineralogy and Petrology, 95(1): 44–54. |
Liu, Y., Yang, Z.M., Brzozowski, M.J., Hao, HD., Sun, J.G. and Zhang, Y., 2025. Magma fO2 and volatiles in the sub-economic Ermi porphyry Cu system in Northeastern China: Implications for porphyry Cu fertility. Journal of Petrology, 66(5): egaf038. |
Liu, Y., Sun, J.G., Han, J.L., Ren, L., Gu, A.L., Zhao, K.Q. and Wang, C.S., 2019. Origin and evolution of ore-forming fluid for the Gaosongshan gold deposit, Lesser Xing'an Range: Evidence from fluid inclusions, H-O-S-Pb isotopes. Geoscience Frontiers, 10(5): 1961-1980. |
Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J. and Chen, H.H., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. |
Loucks, R.R., Fiorentini, M.L.& Henriquez, G.J., 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, 61(3): egaa034. |
Lu, Y.J., Loucks, R.R., Fiorentini, M., Mccuaig, T.C. and Kobussen, A., 2016. Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. Soc. Economic Geology Special. Publication, 19:329–347. |
Ludwig, K.R., 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel.Berkeley, CA: Berkeley Geochronology Center, Special Publication, No. 4, 74 pp. |
Mao, J.W., Xie, G.Q., Yuan, S.D., Liu, P., Meng, X.Y., Zhou, ZH., Zheng, W., 2018. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrologica Sinica, 34(9): 2501-2517. |
McCoy, D., Newberry, R.I., Layer, P., Dimarchi, J.J., Bakke, A., Masterman, J.S., and Minehane, D.L., 1997, Plutonic related gold deposits of interior Alaska: Economic Geology Monograph, 9, p. 191–241. |
Meinert L.D., 1992. Skarns and skarn deposts. Geoscience Canada, 19:145–162. |
Meinert L.D., 1995. Compositional variation of igneous rocks associated with skarn deposits: chemical evidence for a genetic connection between petrogenesis and mineralization. Mineralogical Association of Canada Short Course Series 23,401–18. |
Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World skarn deposits. Economic Geology. 100th Anniversary Volume, 299–336. |
Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews ,37, 215–24. |
Nasir, S., 1994. PTOXY: Software package for the calculation of pressure–temperature–oxygen fugacity using a selection of metamorphic geothermobarometers. Computers and Geosciences, 20(9), 1297–1320. |
O'Neill, H. S.,1987. Quartz‐fayalite‐iron and quartz‐fayalite‐magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). American Mineralogist, 72(1‐2), 67–75. |
Ouyang, H.G. and Che, X.G., 2016. 40Ar-39Ar dating of Ergu Fe-polymetalic skarn deposit in Yichun igneous belt and its geological implications. Mineral Deposits, 35, 1035–46 (in Chinese with English Abstract). |
Pearce, J.A., 1983. Role of the sub-continental lithosphere inmagma genesis at active continental margins, In: Hawkesworth CJ, and Norry MJ (eds), Continental basalts and mantle xenoliths. Shiva, Nantwich, 230–249. |
Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. |
Pons, J., Franchini, M., Meinert, L., L´opez-Escobar, L. and Maydagán, L., 2010. Geology, petrography and geochemistry of igneous rocks related to mineralized skarns in the NW Neuquén basin, Argentina: implications for Cordilleran skarn exploration. Ore Geology Review, 38,37–58. |
Redin, T.O., Redina, A.A., Prokopiev, I.R., Dultsev, V.F., Kirillov, M.V. and Mokrushnikov, V.P., 2020. The Lukoganskoe Au-Cu skarn deposit (eastern Transbaikalia): Mineral composition, age, and formation conditions. Russian Geology and Geophysics, 61: 174-195. |
Ren, L., 2017. Study on the diagenesis mechanisms and metallogenic model of skarn-type Fe-Cu (Mo) polymetallic deposit in the Lesser Xing’an Range, NE China.Master degree thesis, Jilin University, Changchun (in Chinese with English Abstract). |
Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins: Ore Geology Reviews, v. 40, p. 1–26. |
Ridolfi, F., Renzulli, A. and Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc–alkaline magmas: An overview, new thermobarometric formulations and application to subduction–related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45–66. |
Rudnick, R.L. and Gao, S., 2003. Composition of the continental crust. Amsterdam: Elsevier, 2003:1–64. |
Savichev, A.A., Nevolko, P.A., Kolpakov, V.V., Redin, Y.O., Mokrushnikov, V.P., Svetlitskaya, T.V. and Sukhorukov, V.P., 2021. Typomorphic features of placer gold from the Bystrinsky ore field with Fe-Cu-Au skarn and Mo-Cu-Au porphyry mineralization (Eastern Transbaikalia, Russia). Ore Geology Reviews, 129, 103948. |
Schmidt, M. W.,1992. Amphibole composition in tonalite as a function of pressure; an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304–310. |
Shu, Q.H. and Deng, J., 2025. The composition of magmatic-hydrothermal fluids and their related metal mineralization. Science China Earth Sciences, 68(1): 208–225. |
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 150:3–41. |
Simon, A.C., Candela, P.A., Piccoli, P.M., Mengason, M. and Englander, L., 2008. The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag. American Mineralogist, 93 (8-9), 1437–1448. |
Soloviev, S.G., Kryazhev, S.G. and Dvurechenskaya, S.S., 2019. Geology, mineralization, and fluid inclusion characteristics of the Meliksu reduced tungsten skarn deposit, Alai Tien Shan, Kyrgyzstan: Insights into conditions of formation and regional links to gold min eralization. Ore Geology Reviews, 111: 103003. |
Sui, J.X., Li, J.W., Wen, G.J. and Xiao, Y., 2016. The Dewulu Reduced Au Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geology Reviews, 80, 1230–1244. |
Sun, F.T., Zhao, C.T., Sun J.G., Bai, C.L., Liu, Y., Chu X.L., Xu, Z.K., and Han, J.L., 2023. Superimposed mineralization and emplacement paleodepth of the Laozuoshan Cu-Au deposit in the Jiamusi block: Evidence from garnet U-Pb geochronology and mineral geochemistry. Journal of Geochemical Exploration, 250, 107237. |
Sun, J.G., Zhang, Y., Xing, S.W., Zhao, K.Q., Zhang, Z.J., Bai, L.A., Ma, Y.B. and Liu, Y.S., 2012. Genetic types, ore-forming age and geodynamic setting of endogenic molybdenum deposits in the eastern edge of Xing-Meng orogenic belt. Acta Geoscientifica Sinica, 28,1317–32 (in Chinese with English Abstract). |
Sun, J.G., Zhang, Y., Han, S.J., Men, L.J., Li, Y.X., Chai, P. and Yang, F., 2013. Timing of formation and geological setting of low-sulphidation epithermal gold deposits in the continental margin of NE China. Intenational Geology Reviews, 55 (5), 608–632. |
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (ed. AD Saunders), pp. 313–45. Geological Society of London, Special Publication no. 42. |
Tan, H.Y., 2013. Metallogenetic series and prospecting assessment in Lesser Xing’an Range-Zhangguangcai Range metallogenic belt of Heilongjiang Province.M.S thesis, China University of Geosciences, Beijing, China (in Chinese with English Abstract). |
Tang, C., Chai, P., Sun, J.G., Wang, Q.H., Chen, XS., Li, Y.X., Yang, F. and Liu, Y.S., 2011. SHRIMP U-Pb zircon age of gabbro in Da'anhe gold deposit and its geological implications of Yichun, Heilongjiang Province. Global Geology, 30, 173–179 (in Chinese with English Abstract). |
Tatsumi, Y. and Ishizaka, K., 1981. Existence of andesitic primary magma: An example from southwest Japan. Earth and Planetary Science Letters, 53(1):124–130. |
Uchida, E., Endo, S., & Makino, M., 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1), 47–56. |
Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimicaica Cosmochim Acta, 63(3-4): 533–556. |
Wang, J., Xie, G.Q., Cheng, F.H., Zhu, Q.Q., Li, W. and Zhang, Z.Y., 2014. Re-Os dating of molybdenite from the Jilongshan skarn Au deposit in southeast Hubei province, Middle-Lower Yangtze River belt and its tectonic significance. Acta Geological Sinica, 88(8), 1539–1548 (in Chinese with English Abstract). |
Wang, Y.F., Zhang, J.F., Jin, Z.M. and Kohlstedt, D.L., 2012. Low oxygen fugacity dependency for the deformation of partially molten lherzolite. Tectonophysics, 580, 114–123. |
White, W.M. and Patchett, J., 1984. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth and Planetary Science Letters, 67(2):167–185. |
Wones, D.R., Eugster, H.P., 1965. Stability of biotite-experiment theory and application. American Mineralogist, 50 (9), 1228–1272. |
Wood, S.A., and Samson, I.M., 1998, Solubility of ore minerals and complexation of ore metals in hydrothermal solutions: Reviews in Economic Geology, v. 10, p. 33–80. |
Wu, F.Y., Jahn, B.M., Wilde, S. and Sun, D.Y., 2000. Phanerozoic crustal growth. U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328,89–113. |
Wu, F.Y., Yang, J.H., Lo, C.H., Wilde, S.A., Sun, D.Y. and Jahn, B.M., 2007. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Journal of Asian Earth Sciences, 30,542–556. |
Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A. and Jahn, B.M., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41,1–30. |
Xie, G.Q., Mao, J.W., Zhu, Q.Q., Yao, L., Li, Y.H., Li, W. and Zhao, H.J., 2015. Geochemical constraints on Cu-Fe and Fe skarn deposits in the Edong district, Middle-Lower Yangtze River metallogenic belt, China. Ore Geology Review, 64,425–44. |
Xie, G.Q., Mao, J.W., Li, W., Zhu, Q.Q., Liu, H.B., Jia, G.H., Li, Y.H., Li, J.J., Zhang, J., 2016. Dierent proportion of mantle-derived noble gases in the Cu–Fe and Fe skarn deposits: He–Ar isotopic constraint in the Edong district, Eastern China. Ore Geology Review, 72, 343–354. |
Xu, W.L., Wang, D.Y., Wang, Q.H., Lin, JQ., 2003. Petrology and geochemistry of two types of mantle-derived xenoliths in Mesozoic diorite from western Shandong province. Acta Petrologica Sinica, 19(4): 623–636 (in Chinese with English Abstract). |
Xue, M.X., 2012. Metallgenesis of Endogenic Gold Deposits in Heilongjiang Province. Jilin University, Changchun, China (in Chinese with English Abstract). |
Yang, J.H., Wu, F.Y., Shao, J.A., Wilde, S.A., Xie, L.W. and Liu, X.M., 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246, 336–52. |
Yang, F., 2013. The study on mineralization and metallogenic background of Dan’anhe gold deposit in Yichun, Heilongjiang Province.Master degree thesis, Jilin University, Changchun, China (in Chinese with English Abstract). |
Yao, L., Xie, G.Q., Mao, J.W., Lü, Z.C., Zhao, C.S., Zheng, X.W., Ding, N., 2015. Geological, geochronological, and mineralogical constraints on the genesis of the Chengchao skarn Fe deposit, Edong ore district, Middle-Lower Yangtze River Valley metallogenic belt, eastern China. Journal of Asian Earth Science, 101, 68–82. |
Yao, L., Lü, Z.C., Zhao, C.S., Pang, Z.S., Yu, X.F., Yang, T., Li, Y.S., Liu, P. and Zhang, M.C., 2017. Zircon U-Pb geochronological, trace element, and Hf isotopic constraints on the genesis of the Fe and Cu skarn deposits in the Qiman Tagh area, Qinghai Province, Eastern Kunlun Orogen, China. Ore Geology Reviews, 91:387–403. |
Yu, J.J., Wang, F., Xu, W.L., Gao, F.H. and Pei, F.P., 2012. Early Jurassic mafic magmatism in the Lesser Xing’an– Zhangguangcai Range, NE China, and its tectonic implications: constraints from zircon U-Pb chronology and geochemistry. Lithos, 142–143,256–66. |
Zhang, Y.M., Gu, X.X., Yao, S.Y., Wang, J.L. and Liu, R.P., 2023. Magmatic to hydrothermal evolution of the Gaogangshan Mo deposit, NE China: Mineralogical insights from quartz. Ore Geology Reviews, 156, 105388. |
Zhao, C.T., Sun J.G., Chu X.L., Qin, K.Z., Ren, L., Xu, Z.K., Liu, Y., Han, J.L.,Bai, C.L. and Shu, W., 2021a. Metallogeny of the Ergu Fe-Zn polymetallic deposit, central Lesser Xing’an Range, NE China: Evidence from skarn mineralogy, fluid inclusions and H-O-S-Pb isotopes. Ore Geology Reviews, 2021a, 135, 104227. |
Zhao, C.T., Sun J.G., Liu, Y., Chu X.L., Xu, Z.K., Han, J.L., Li, W.Q., Ren, L. and Bai, C.L., 2021b. Constraints of magmatism on the Ergu Fe-Zn polymetallic metallogenic system in the central Lesser Xing’an Range, NE China: evidence from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes. Geological Magazine, 158, 1862–1890. |
Zhao, C.T., Sun, F.T., Sun, J.G., Wang, J.P., Han, J.L., Chu, X.L., Bai, C.L., Yu, D.M., Xu, Z.K., Yi, L. and Hua, S., 2024. Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes. Minerals, 14(3), 214. |
Zhao, Z.H., Chen, J., Qiao, K., Cui, X.M., Sun, J.G., Li, C.L. and Yang, Y., 2019. Ore-fluid sources and genesis of Yongxin gold deposit in northwestern Xiao Hinggan Mountains:Constraint from fluid inclusions and H-O-S-Pb isotopes. Mineral Deposits, 40(2): 221–240 (in Chinese with English Abstract). |
Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Zheng, C.Q., Wang, Y.J. and Zhang, X.H., 2009. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478, 230–246. |
Zhou, J.B. and Wilde, S.A., 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4):1365–1377. |
Zou, X.Y., Qin, K.Z., Han, X.L., Li, G.M., Evans, N.J., Li, Z.Z. and Yang, W., 2019. Insight into zircon REE oxy-barometers: a lattice strain model perspective. Earth and Planetary Science Letters, 506,87–96. |