Angon, P. B., Islam, M. S., Kc, S., et al., 2024. Sources, effects and present perspectives of heavy metals contamination: soil, plants and human food chain. Heliyon, 10(7): e28357. https://doi.org/10.1016/j.heliyon.2024.e28357. |
Babechuk, M. G., Widdowson, M., Murphy, M., et al., 2015. A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan Traps, India. Chemical Geology, 396: 25–41. http://dx.doi.org/10.1016/j.chemgeo.2014.12.017. |
Bao, Z. W., Zhao, Z. H., 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 33(3–4): 519–535. https://doi.org/10.1016/j.oregeorev.2007.03.005. |
Braun, J. J., Marechal, J. C., Riotte, J., et al., 2012. Elemental weathering fluxes and saprolite production rate in a Central African lateritic terrain (Nsimi, South Cameroon). Geochimica et Cosmochimica Acta, 99: 243–270. http://dx.doi.org/10.1016/j.gca.2012.09.024. |
Braun, J. J., Pagel, M., Muller, J. P., et al., 1990. Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54(3): 781–795. https://doi.org/10.1016/0016-7037(90)90373-s. |
Buss, H. L., Lara, M. C., Moore, O. W., et al., 2017. Lithological influences on contemporary and long–term regolith weathering at the Luquillo Critical Zone Observatory. Geochimica et Cosmochimica Acta, 196: 224–251. https://doi.org/10.1016/j.gca.2016.09.038. |
Byrne, R. H., Li, B., 1995. Comparative complexation behavior of the rare earths. Geochimica et Cosmochimica Acta, 59(22): 4575–4589. https://doi.org/10.1016/0016-7037(95)00303-7. |
Campodonico, V. A., Pasquini, A. I., Lecomte, K. L., et al., 2019. Chemical weathering in subtropical basalt–derived laterites: a mass balance interpretation (misiones, ne argentina). Catena, 173: 352–366. https://doi.org/10.1016/j.catena.2018.10.027. |
Chadwick, O. A., Chorover, J., Chadwick, K. D., et al., 2022. Constraints of climate and age on soil development in Hawai. Biogeochemistry of the critical zone: Springer, 49–88. https://doi.org/10.1007/978-3-030- 95921-0_3. |
Chen, Z. H., 2011. Global rare earth resources and scenarios of future rare earth industry. Journal of Rare Earths, 29(1): 1–6. https://doi.org/10.1016/S1002-0721(10)60401-2. |
Cheng, S., 2023. Clay mineralogy in the Tongcheng granitederived soil and evolution of typical minerals of granite during weathering under subtropical climate: [Dissertation]. China University of Geosciences, Wuhan. 64–65 (in Chinese). |
Cheng, S., Hong, H. L., Ji, K. P., et al., 2022. New insight into biotite weathering in the subtropic Tongcheng granite regolith, Hubei Province, South China. Applied Clay Science, 224: 106518. https://doi.org/10.1016/j.clay.2022.106518. |
Da Silva, Y. J. A. B., Do Nascimento, C.W.A., Biondi, C.M., et al., 2017. Influence of metaluminous granite mineralogy on the rare earth element geochemistry of rocks and soils along a climosequence in Brazil. Geoderma, 306: 28–39. https://doi.org/10.1016/j.geoderma.2017.06.031. |
Deluca, F., Mongelli, G., Paternoster, M., et al., 2020. Rare earth elements distribution and geochemical behaviour in the volcanic groundwaters of mount vulture, southern italy. Chemical Geology, 539: 119503. https://doi.org/10.1016/j.chemgeo.2020.119503. |
Dequincey, O., Chabaux, F., Clauer, N., et al., 2002. Chemical mobilizations in laterites: evidence from trace elements and U–238–U–234–Th–230 disequilibria. Geochimica et Cosmochimica Acta, 66: 1197–1210. https://doi.org/10.1016/S0016-7037(01)00845-6. |
Fang, Q., Hong, H. L, Zhao, L. L., et al., 2018. The climatic significance of authigenic minerals during the weathering process to soil formation. Earth Science, 43(03): 753–769(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.905. |
Farrah, H., Pickering, W. F., 1979. Ph effects in the adsorption of heavy metal ions by clays. Chemical Geology, 25(4): 317–326. https://doi.org/10.1016/0009-2541(79)90063-9. |
Feng, J. L., 2010. Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa over dolomite during chemical weathering. Chemical Geology, 271(3–4): 112–132. https://doi.org/10.1016/j.chemgeo.2010.01.003. |
Fu, H. J., Jian, X., Liang, H. H., et al., 2022. Tectonic and climatic forcing of chemical weathering intensity in the northeastern Tibetan Plateau since the middle Miocene. Catena, 208: 105785. https://doi.org/10.1016/j. catena.2021.105785. |
Fu, W., Li, X. T., Feng, Y. Y., et al., 2019. Chemical weathering of S–type granite and formation of Rare Earth Element (REE)–rich regolith in South China: Critical control of lithology. Chemical Geology, 520: 33–51. https://doi.org/10.1016/j.chemgeo.2019.05.006. |
Galán, E., Fernández–Caliani, J. C., Miras, A., et al., 2007. Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain. Clay Minerals, 42(3): 341–352. https://doi.org/10.1180/claymin.2007.042.3.07. |
Gao, L., Wang, Z. W., Zhu, A. P., et al., 2019. Quantitative source identification and risk assessment of trace elements in soils from Leizhou Peninsula, South China. Human and Ecological Risk Assessment: An International Journal, 25(7): 1832–1852. https://doi.org/10.1080/10807039.2018. 1475216. |
Gao, X., 2017. Clay Mineralogy. Clay Mineralogy, Beijing. 80 (in Chinese with English abstract). |
Ghasera, K. M., Rashid, S. A., 2024. Influence of micro–scale factors in weathering and elements mobility: evidence from a comparative study of granite and basalt weathering profiles across india. Catena, 235: 107680. https://doi.org/10.1016/j.catena.2023.107680. |
Granger, D. E., Riebe, C. S., 2007. Cosmogenic Nuclides in Weathering and Erosion. Oxford: Pergamon, 1–43. https://doi.org/10.1016/B978-008043751-4/00238-8. |
Han, G. L., Li, F. S., Tang, Y., 2017. Organic matter impact on distribution of rare earth elements in soil under different land uses. Clean–Soil, Air, Water, 45(2): 1600235. https://doi.org/10.1002/clen.201600235. |
Hill, I. G., Worden, R. H., Meighan, I. G., 2000. Yttrium: the immobility–mobility transition during basaltic weathering. Geology, 28(10): 923–926. http://pubs.geoscienceworld.org/gsa/geology/article-pdf/28/10/923/3519361/i0091-7613-28-10-923. |
Hong, H. L, Ji, K. P., Hei, H. T., et al., 2023. Clay mineral evolution and formation of intermediate phases during pedogenesis on picrite basalt bedrock under temperate conditions (Yunnan, southwestern China). Catena, 220: 106677. https://doi.org/10.1016/j.catena.2022.106677. |
Hong, H. L., Wang, J. W., Wang, C. W., et al., 2024. Clay and Fe (oxyhydr)oxide mineralogy in the basalt weathering profile in Hainan (southern China): implications for pedogenesis process. Clays and Clay Minerals, 72: e8, 1–17. https://doi.org/10.1017/cmn.2024.14. |
Hseu, Z. Y., Lai, Y. J., 2017. Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in taiwan. Environmental geochemistry and health, 39(6): 1325–1334. https://coi.org/10.1007/s10653-017-9925-6. |
Huang, K. J., Teng, F. Z., Wei, G. J., et al., 2012. Adsorption– and desorption–controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China. Earth and Planetary Science Letters, 359: 73–83. https://doi.org/10.1016/j.epsl.2012.10.007. |
Janots, E., Bernier, F., Brunet, F., et al., 2015. Ce(III) and Ce(IV) (re)distribution and fractionation in a laterite profile from Madagascar: Insights from in situ XANES spectroscopy at the Ce LIII-edge. Geochimica et Cosmochimica Acta, 153: 134–148. https://doi.org/10.1016/j.gca.2015.01.009. |
Ji, H. B., Wang, S. J., Ouyang, Z. Y., et al., 2004. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau II. The mobility of rare earth elements during weathering. Chemical Geology, 203(1–2): 29–50. https://doi.org/10.1016/j.chemgeo.2003.08.013. |
Jian, X., Zhang, W., Liang, H. H., et al., 2019. Mineralogy, petrography and geochemistry of an early Eocene weathering profile on basement granodiorite of Qaidam basin, northern Tibet: Tectonic and paleoclimatic implications. Catena, 172: 54–64. https://doi.org/10.1016/j.catena.2018.07.029. |
Jiang, K., Qi, H. W., Hu, R. Z., 2018. Element mobilization and redistribution under extreme tropical weathering of basalts from the Hainan Island, South China. Journal of Asian Earth Sciences, 158: 80–102. https://doi.org/10.1016/j.jseaes.2018.02.008. |
Jing, F., Chen, X. M., Yang, Z. J., et al., 2018. Heavy metals status, transport mechanisms, sources, and factors affecting their mobility in Chinese agricultural soils. Environmental earth sciences, 77(3): 1–9. https://doi.org/10.1007/s12665-018-7299-4. |
Kierczak, J., Pędziwiatr, A., Waroszewski, J., et al., 2016. Mobility of ni, cr and co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma, 268: 78–91. https://coi.org/10.1016/j.geoderma.2016.01.025. |
Kurtz, A. C., Derry, L. A., Chadwick, O. A., et al., 2000. Refractory element mobility in volcanic soils. Geology, 28(8): 683–686. https://doi.org/10.1130/0091-7613(2000) 28%3C683:REMIVS%3E2.0.CO, 2. |
Laveuf, C., Cornu, S., 2009. A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma, 154(1–2): 1–12. https://doi.org/10.1016/j.geoderma.2009.10.002. |
Li, J. W., Zhang, G. L., Gong, Z. T., 2014. Mobilization and redistribution of elements in soils developed from extreme weathering basalt on hainan island. Chinese Journal of Geochemistry, 33(3): 262–271. https://coi.org/10.1007/s11631-014-0686-y. |
Li, M. Y. H., Zhou, M. F., 2020. The role of clay minerals in formation of the regolith–hosted heavy rare earth element deposits. American Mineralogist, 105(1): 92–108. https://doi.org/10.2138/am-2020-7061. |
Li, M. Y. H., Zhou, M. F., Williams–Jones, A.E., 2019. The Genesis of Regolith–Hosted Heavy Rare Earth Element Deposits: Insights from the World–Class Zudong Deposit in Jiangxi Province, South China. Economic Geology, 114(3): 541–568. https://doi.org/10.5382/econgeo.4642. |
Li, P., Li, L. K., Liu, X., et al., 2020. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: a case study of the giant Renli Nb–Ta deposit in Hunan, China. Ore Geology Reviews, 116: 103237. https://doi.org/10.1016/j.oregeorev.2019.103237. |
Ling, K. Y., Zhu, X. Q., Tang, H. S., et al., 2018. Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou Province, SW China: Implications for the behavior of trace and rare earth elements. Journal of Geochemical Exploration, 190: 170–186. https://doi.org/10.1016/j.gexplo.2018.03.007. |
Liu, K., Dai, H. M., Song, Y. H., et al., 2024. Climate and soil geochemistry influence the soil organic carbon content in drylands of the Songliao Plain, Northeast China. Acta Geologica Sinica (English Edition), 98 (5): 1394–1403. https://doi.org/10.1111/1755-6724.15211. |
Liu, W. J., Li, Y. C., Wang, X., et al., 2022. Weathering stage and topographic control on rare earth element (REE) behavior: New constraints from a deeply weathered granite hill. Chemical Geology, 610: 121066. https://doi.org/10.1016/j.chemgeo.2022.121066. |
Liu, Y. Z., Xiao, T. F., Perkins, R. B., et al., 2017. Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration, 176: 42–49. https://doi.org/10.1016/j.gexplo.2016.04.004. |
Lu, A. X., Wang, J. H., Qin, X. Y., et al., 2012. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the total environment, 425: 66–74. https://doi.org/10.1016/j.scitotenv.2012.03.003. |
Luo, K., Ma, J. L., 2022. Recent advances in migration and enrichment of rare earth elements during chemical weathering of granite. Advances in Earth Science, 37(7): 692–708(in Chinese with English abstract). https://doi.org/10.11867/j.issn.1001-8166.2022.040. |
Ma, J. L., Wei, G. J., Xu, Y. G., et al., 2007. Mobilization and re–distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71(13): 3223–3237. https://doi.10.1016/j.gca.2007.03.035. |
Ma, Y. J., Liu, C. Q., 1999. Geochemistry of trace elements in chemical weathering: A case study of biomica granite weathering crust in Longnan, Jiangxi Province. Chinese Science Bulletin, 44(22): 2433–2437(in Chinese). https://doi.10.3321/j.issn:0023-074X.1999.22.015. |
Macheyeki, A. S., Li, X., Kafumu, D. P., et al., 2020. Elements of exploration geochemistry. Applied Geochemistry: Advances in Mineral Exploration Techniques, 1–43. https://doi.org/10.1016/B978-0-12-819495- 9.00001-3. |
Mao, H. R., Cui, L. F., Zhang, Z. J., et al., 2022. Influence of monsoon climate on chemical weathering of granitic regoliths. Global Biogeochemical Cycles, 36(5): e2022GB007362. https://doi.org/10.1029/2022GB007362. |
Mao, H. R., Liu, C. Q., Zhao, Z. Q., et al., 2017. Distribution of rare earth elements of granitic regolith under the influence of climate. Acta Geochimica, 36: 440–445. https:// doi.org/10.1007/s11631-017-0186-y. |
Marques, J. J., Schulze, D. G., Curi, N., et al., 2004. Trace element geochemistry in Brazilian Cerrado soils. Geoderma, 121(1–2): 31–43. https://doi.org/10.1016/j.geoderma.2003.10.003. |
Mehta, P., Malviya, V. P., 2021. Weathering pattern of amphibolites in the different climate zones from Western Dharwar Craton, Southern India. Arabian Journal of Geosciences, 14: 1–19. https://doi.org/10.1007/s12517-021-08595-x. |
Middelburg, J. J., Weijden, C. H. V., Woittiez, J. R. W., 1988. Chemical processes affecting the mobility of major, minor, and trace elements during weathering of granitic rocks. Chemical geology, 68(3–4): 253–273. https://doi.org/10.1016/0009-2541(88)90025-3. |
Mihajlovic, J., Bauriegel, A., Stärk, H. J., et al., 2019. Rare earth elements in soil profiles of various ecosystems across Germany. Applied Geochemistry, 102: 197–217. https://doi.org/10.1016/j.apgeochem.2019.02.002. |
Mohanty, S. P., Nanda, S., 2016. Geochemistry of a paleosol horizon at the base of the Sausar Group, central India: Implications on atmospheric conditions at the ArcheanPaleoproterozoic boundary. Geoscience Frontiers, 7(5): 759–773. https://doi.org/10.1016/ j.gsf.2015.10.002. |
Mongelli, G., 1997. Ce–anomalies in the textural components of upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology, 140(1–2): 69–79. https://doi.org/10.1016/S0009-2541(97)00042-9. |
Nagayasu, T., Imamura, K., Nakanishi, K., 2005. Adsorption characteristics of various organic substances on the surfaces of tantalum, titanium, and zirconium. Journal of colloid and interface science, 286(2): 462–470. https://doi.org/10.1016/j.jcis.2005.01.023. |
Nesbitt, H. W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279(5710): 206–210. https://doi.org/10.1038/279206a0. |
Nesbitt, H. W., Markovics, G., 1997. Weathering of granodioritic crust, long– term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61(8): 1653–1670. https://doi.org/10.1016/S0016-7037(97)00031-8. |
Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11): 1659–1666. https://doi.org/10.1016/0016-7037(80)90218-5. |
Nesbitt, H. W., Wilson, R. E., 1992. Recent chemical weathering of basalts. American Journal of science, 292(10): 740–777. https://doi.org/10.2475/ajs.292.10.740. |
Peng, B., Rate, A., Song, Z. L., et al., 2014. Geochemistry of major and trace elements and Pb–Sr isotopes of a weathering profile developed on the Lower Cambrian black shales in central Hunan, China. Applied Geochemistry, 51: 191–203. https://doi.org/10.1016/j.apgeochem.2014.09.007. |
Roy, S., Acharya, S. S., Chakrabarti, R., 2024. Mobilization of rare earth elements during extreme weathering of basalt. Geochemistry, 84 (1): 126086. https://doi.org/10.1016/j.chemer.2024.126086. |
Shen, C. B., Hu, D., Min, K., et al., 2020. Post–Orogenic Tectonic Evolution of the Jiangnan–Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China. Journal of Earth Science, 31(5): 905–918. https://doi.org/10.1007/s12583-020-1346-2. |
Sonke, J. E., 2006. Lanthanide-humic substances complexation. II. Calibration of Humic Ion-Binding Model V. Environmental Science & Technology, 40(24): 7481–7487. https://doi.org/10.1021/es060490g. |
Srinivasarao, C., Rama Gayatri, S., Venkateswarlu, B., et al., 2014. Heavy metals concentration in soils under rainfed agro–ecosystems and their relationship with soil properties and management practices. International Journal of Environmental Science and Technology, 11(7): 1959–1972. https://doi.org/10.1007/s13762-013-0350-9. |
Srivastava, P., Siva Siddaiah, N., Sangode, S. J., et al., 2018. Trace element behavior in moderately weathered boles from the Deccan volcanic province: Implications for paleoenvironment. Catena, 169: 151–163. https://doi.org/10.1016/j.catena.2018.05.027. |
Sun, C. Y., Liu, J. S., Wang, Y., et al., 2013. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92(5): 517–523. https://doi.org/10.1016/j.chemosphere.2013.02.063. |
Tamfuh, P. A., Nono, D. G. K., Wotchoko, P., et al., 2020. Geochemistry of a lateritic mantle developed on basalt in the Cameroon Western Highlands (Cameroon Volcanic Line). Geoderma, 376, 114569. https://doi.org/10.1016/j.geoderma.2020.114569. |
Tao, A., Song, Z. L., Li, J. W., 2023. Geochemical characteristics of rare earth elements in basalt–developed soils and their indicative significance. Earth and Environment, 51(04): 388–400. https://doi.org/10.14050/j.cnki.1672-9250.2022.50.090. |
Topp, S. E., Salbu, B., Roaldset, E., et al., 1984. Vertical distribution of trace elements in laterite soil (suriname). Chemical Geology, 47(1–2): 159–174. https://doi.org/10.1016/0009-2541(84)90104-9. |
Tóth, G., Hermann, T., Da Silva, M. R., et al., 2016. Heavy metals in agricultural soils of the european union with implications for food safety. Environment International, 88: 299–309. https://coi.org/10.1016/j.envint.2015.12.017. |
Velde, B., Meunier, A., 2008. Clay Mineral Formation in Weathered Rocks: Water/Rock Interaction. Berlin Heidelberg: Springer, 143–239. https://doi.org/10.1007/978-3-540-75634-7_4. |
Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K., et al., 2020. Rare earth elements geochemistry of groundwater from shanmuganadhi, tamilnadu, india: chemical weathering implications using geochemical mass–balance calculations. Geochemistry, 80(4): 125668. https://doi.org/10.1016/j.chemer.2020.125668. |
Vural, A., 2020. Investigation of the relationship between rare earth elements, trace elements, and major oxides in soil geochemistry. Environmental Monitoring and Assessment, 192(2): 124. https://coi.org/10.1007/s10661-020-8069-9. |
Wang Y. L., Zhang C. J., Xiu S. Z., 2001. Th/Hf–Ta/Hf diagrammatic discrimination for the geotectonic environment of the formation of basaltic rock types. Acta Petrologica Sinica, 17(3): 413-421. (in Chinese with English abstract). https://doi.org/000-0569/2001/017(03)-0413-21. |
Wang, H. X., Li, X. M., Chen, Y., et al., 2020. Geochemical behavior and potential health risk of heavy metals in basalt–derived agricultural soil and crops: a case study from xuyi county, eastern china. Science of the Total Environment, 729: 139058. https://doi.org/10.1016/j.scitotenv.2020.139058. |
Wang, X. C., Li, Z. X., Li, X. H., et al., 2012. Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones? Journal of Petrology, 53(1): 177–233. https://doi.org/10.1093/petrology/egr061. |
Yang, J. X., Liu, C. Q., Zhao, Z. Q., et al., 2016. Geochemical behavior of rare earth elements during granite weathering in different climatic zones. Journal of Mineralogy, 36(1): 125–137. https://coi.org/10.16461/j.cnki.1000-4734.2016.01.020. |
Young, G. M., Nesbitt, H. W., 1998. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary research, 68(3): 448–455. https://doi.org/10.2110/jsr.68.448. |
Yusoff, Z. M., Ngwenya, B. T., Parsons, I., 2013. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349: 71–86. https://doi.org/10.1016/j. chemgeo.2013.04.016. |
Zhu, B. Q., Wang, H. F., 1989. Nd–Sr–Pb isotopic and chemical evidence for the volcanism with MORB–OIB source characteristics in the Leiqiong area, China. Geochimica, 17: 193–201(in Chinese with English abstract). https://doi.10.19700/j.0379-1726.1989.03.001. |
Zhu, L. J., He, S. Y., Li, J. Y., 2008. Weathering–pedogenesis of carbonate rocks and its environmental effects in subtropical region. Acta Geologica Sinica (English Edition), 82(5): 982– 993. https://doi.org/10.1111/j.1755-6724.2008.tb00654.x. |