|
An, R., Zhao, G. C., Han, Y. G., et al., 2025. Slab-Derived Fluid Contributes to Subducted Material Recycling and Crust Growth: Insights from the Arc Volcanics in East Junggar (NW China). Lithos, 510: 108114. https://doi.org/10.1016/j.lithos.2025.108114 |
|
An, R., 2021. Paleozoic Tectonic Evolution in the Northern Margin of East Junggar, NW China: Constraints from Volcanic Rocks in the Qiakurtu-Ertai Area: [Dissertation]. Northwest University, Xi'an. 1–173 (in Chinese with English Abstract) |
|
Chen, Y. X., Schertl, H. P., Zheng, Y. F., et al., 2016. Mg-O Isotopes Trace the Origin of Mg-Rich Fluids in the Deeply Subducted Continental Crust of Western Alps. Earth and Planetary Science Letters, 456: 157–167. https://doi.org/10.1016/j.epsl.2016.09.010 |
|
Cooper, G. F., MacPherson, C. G., Blundy, J. D., et al., 2020. Variable Water Input Controls Evolution of the Lesser Antilles Volcanic Arc. Nature, 582(7813): 525–529. https://doi.org/10.1038/s41586-020-2407-5 |
|
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0 |
|
Elliott, T., Plank, T., Zindler, A., et al., 1997. Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991–15019. https://doi.org/10.1029/97jb00788 |
|
Foden, J., Sossi, P. A., Nebel, O., 2018. Controls on the Iron Isotopic Composition of Global Arc Magmas. Earth and Planetary Science Letters, 494: 190–201. https://doi.org/10.1016/j.epsl.2018.04.039 |
|
He, Y. S., Wu, H. J., Ke, S., et al., 2017. Iron Isotopic Compositions of Adakitic and Non-Adakitic Granitic Magmas: Magma Compositional Control and Subtle Residual Garnet Effect. Geochimica et Cosmochimica Acta, 203: 89–102. https://doi.org/10.1016/j.gca.2017.01.005 |
|
Hu, Y., Teng, F. Z., Ionov, D. A., 2020. Magnesium Isotopic Composition of Metasomatized Upper Sub-Arc Mantle and Its Implications to Mg Cycling in Subduction Zones. Geochimica et Cosmochimica Acta, 278: 219–234. https://doi.org/10.1016/j.gca.2019.09.030 |
|
Hu, Y., Teng, F. Z., Plank, T., et al., 2017. Magnesium Isotopic Composition of Subducting Marine Sediments. Chemical Geology, 466: 15–31. https://doi.org/10.1016/j.chemgeo.2017.06.010 |
|
Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proceedings of the National Academy of Sciences of the United States of America, 113(52): 14904–14909. https://doi.org/10.1073/pnas.1607712113 |
|
Liu, X. N., Hin, R. C., Coath, C. D., et al., 2022. Equilibrium Olivine-Melt Mg Isotopic Fractionation Explains High δ26Mg Values in Arc Lavas. Geochemical Perspectives Letters, 22: 42–47. https://doi.org/10.7185/geochemlet.2226 |
|
Pettke, T., Bretscher, A., 2022. Fluid-Mediated Element Cycling in Subducted Oceanic lithosphere: The Orogenic Serpentinite Perspective. Earth-Science Reviews, 225: 103896. https://doi.org/10.1016/j.earscirev.2021.103896 |
|
Qiao, X. -Y., Xiong, J. -W., et al., 2025. Magnesium and Boron Isotope Evidence for the Generation of Arc Magma through Serpentinite-Mélange Melting. National Science Review, 12(1): nwae363. https://doi.org/10.1093/nsr/nwae363 |
|
Qu, Y. R., Liu, S. G., Gamaleldien, H., 2025. Insights into Subduction-Zone Fluid-Rock Interactions and Carbon Cycling from Magnesium Isotopes of Subducted Ophiolitic Mélanges in the Arabian-Nubian Shield. Geochemistry, Geophysics, Geosystems, 26(3): e2024GC011918. https://doi.org/10.1029/2024gc011918 |
|
Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335–356. https://doi.org/10.1016/s0009-2541(99)00106-0 |
|
Sajona, F. G., Maury, R. C., Bellon, H., et al., 1993. Initiation of Subduction and the Generation of Slab Melts in Western and Eastern Mindanao, Philippines. Geology, 21(11): 1007.https://doi.org/10.1130/0091-7613(1993)0211007:iosatg>2.3.co;2 doi: 10.1130/0091-7613(1993)0211007:iosatg>2.3.co;2 |
|
Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05B07. https://doi.org/10.1029/2003gc000597 |
|
Sang, M., Tan, Z., Xiao, W. J., et al., 2023. Formation of the Eclogites of the Atbashi Complex, Kyrgyzstan, in a Subduction Zone Mélange Diapir. Communications Earth & Environment, 4: 434. https://doi.org/10.1038/s43247-023-01106-8 |
|
Schmidt, M. W., Poli, S., 2014. Devolatilization during Subduction. In: Holland, H. D., Turekian, K. K., Rudnick, R. L., eds., Treatise on Geochemistry 4: The Crust. Elsevier, Amsterdam. 669–701. https://doi.org/10.1016/b978-0-08-095975-7.00321-1 |
|
Syracuse, E. M., van Keken, P. E., Abers, G. A., 2010. The Global Range of Subduction Zone Thermal Models. Physics of the Earth and Planetary Interiors, 183(1/2): 73–90. https://doi.org/10.1016/j.pepi.2010.02.004 |
|
Teng, F. Z., 2017. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219–287. https://doi.org/10.2138/rmg.2017.82.7 |
|
Teng, F. Z., Li, W. Y., Ke, S., et al., 2010. Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74(14): 4150–4166. https://doi.org/10.1016/j.gca.2010.04.019 |
|
Teng, F. Z., Hu, Y., Chauvel, C., 2016. Magnesium Isotope Geochemistry in Arc Volcanism. Proceedings of the National Academy of Sciences of the United States of America, 113(26): 7082–7087. https://doi.org/10.1073/pnas.1518456113 |
|
Turner, S. J., Langmuir, C. H., 2022. An Evaluation of Five Models of Arc Volcanism. Journal of Petrology, 63(3): egac010. https://doi.org/10.1093/petrology/egac010 |
|
Wang, S. J., Teng, F. Z., Li, S. G., et al., 2017. Tracing Subduction Zone Fluid-Rock Interactions Using Trace Element and Mg-Sr-Nd Isotopes. Lithos, 290: 94–103. https://doi.org/10.1016/j.lithos.2017.08.004 |
|
Wang, S. J., Kang, J. T., Ding, X., et al., 2024. Magnesium Isotope Behavior in Oceanic Magmatic Systems: Constraints from Mid-Ocean Ridge Lavas from the East Pacific Rise. Earth and Planetary Science Letters, 638: 118739. https://doi.org/10.1016/j.epsl.2024.118739 |
|
Wang, Y., He, Y. S., Ke, S., 2020. Mg Isotope Fractionation during Partial Melting of Garnet-Bearing Sources: An Adakite Perspective. Chemical Geology, 537: 119478. https://doi.org/10.1016/j.chemgeo.2020.119478 |
|
Wood, B. J., Turner, S. P., 2009. Origin of Primitive High-Mg Andesite: Constraints from Natural Examples and Experiments. Earth and Planetary Science Letters, 283(1/2/3/4): 59–66. https://doi.org/10.1016/j.epsl.2009.03.032 |
|
Yang, Q. C., Fang, W., Dai, L. Q., et al., 2025. Heavy Mo-Mg-O Isotopes Anomaly Observed in Orogenic Magmatism: Serpentinites Fingerprint in Paleo-Oceanic Subduction Zone Magmatism. Geophysical Research Letters, 52(11): e2025GL115040. https://doi.org/10.1029/2025gl115040 |
|
Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., et al., 1994. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, Far Western Aleutians. Journal of Petrology, 35(1): 163–204. https://doi.org/10.1093/petrology/35.1.163 |
|
Zhang, W., Kitagawa, H., Huang, F., 2025. Magnesium Isotope Composition of Volcanic Rocks from Cold and Warm Subduction zones: Implications for the Recycling of Subducted Serpentinites and Carbonates. Geochimica et Cosmochimica Acta, 391: 158–176. https://doi.org/10.1016/j.gca.2024.12.024 |