Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Rui An, Yongsheng He, Shan Ke, Guochun Zhao, Aiying Sun, Yang Wang, Hongsheng Xu. Heavy Magnesium Isotope Evidence for a Key Role of Serpentinite-Derived Fluids in Arc Magmatism. Journal of Earth Science, 2025, 36(6): 2798-2802. doi: 10.1007/s12583-025-2038-8
Citation: Rui An, Yongsheng He, Shan Ke, Guochun Zhao, Aiying Sun, Yang Wang, Hongsheng Xu. Heavy Magnesium Isotope Evidence for a Key Role of Serpentinite-Derived Fluids in Arc Magmatism. Journal of Earth Science, 2025, 36(6): 2798-2802. doi: 10.1007/s12583-025-2038-8

Heavy Magnesium Isotope Evidence for a Key Role of Serpentinite-Derived Fluids in Arc Magmatism

doi: 10.1007/s12583-025-2038-8
More Information
  • Corresponding author: Yongsheng He, heys@cugb.edu.cn
  • Received Date: 10 Jul 2025
  • Accepted Date: 30 Aug 2025
  • Issue Publish Date: 30 Dec 2025
  • Electronic Supplementary Materials:   Supplementary materials (Figures S1–S6, Table S1) are available in the online version of this article at https://doi.org/10.1007/s12583-025-2038-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • An, R., Zhao, G. C., Han, Y. G., et al., 2025. Slab-Derived Fluid Contributes to Subducted Material Recycling and Crust Growth: Insights from the Arc Volcanics in East Junggar (NW China). Lithos, 510: 108114. https://doi.org/10.1016/j.lithos.2025.108114
    An, R., 2021. Paleozoic Tectonic Evolution in the Northern Margin of East Junggar, NW China: Constraints from Volcanic Rocks in the Qiakurtu-Ertai Area: [Dissertation]. Northwest University, Xi'an. 1–173 (in Chinese with English Abstract)
    Chen, Y. X., Schertl, H. P., Zheng, Y. F., et al., 2016. Mg-O Isotopes Trace the Origin of Mg-Rich Fluids in the Deeply Subducted Continental Crust of Western Alps. Earth and Planetary Science Letters, 456: 157–167. https://doi.org/10.1016/j.epsl.2016.09.010
    Cooper, G. F., MacPherson, C. G., Blundy, J. D., et al., 2020. Variable Water Input Controls Evolution of the Lesser Antilles Volcanic Arc. Nature, 582(7813): 525–529. https://doi.org/10.1038/s41586-020-2407-5
    Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0
    Elliott, T., Plank, T., Zindler, A., et al., 1997. Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991–15019. https://doi.org/10.1029/97jb00788
    Foden, J., Sossi, P. A., Nebel, O., 2018. Controls on the Iron Isotopic Composition of Global Arc Magmas. Earth and Planetary Science Letters, 494: 190–201. https://doi.org/10.1016/j.epsl.2018.04.039
    He, Y. S., Wu, H. J., Ke, S., et al., 2017. Iron Isotopic Compositions of Adakitic and Non-Adakitic Granitic Magmas: Magma Compositional Control and Subtle Residual Garnet Effect. Geochimica et Cosmochimica Acta, 203: 89–102. https://doi.org/10.1016/j.gca.2017.01.005
    Hu, Y., Teng, F. Z., Ionov, D. A., 2020. Magnesium Isotopic Composition of Metasomatized Upper Sub-Arc Mantle and Its Implications to Mg Cycling in Subduction Zones. Geochimica et Cosmochimica Acta, 278: 219–234. https://doi.org/10.1016/j.gca.2019.09.030
    Hu, Y., Teng, F. Z., Plank, T., et al., 2017. Magnesium Isotopic Composition of Subducting Marine Sediments. Chemical Geology, 466: 15–31. https://doi.org/10.1016/j.chemgeo.2017.06.010
    Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proceedings of the National Academy of Sciences of the United States of America, 113(52): 14904–14909. https://doi.org/10.1073/pnas.1607712113
    Liu, X. N., Hin, R. C., Coath, C. D., et al., 2022. Equilibrium Olivine-Melt Mg Isotopic Fractionation Explains High δ26Mg Values in Arc Lavas. Geochemical Perspectives Letters, 22: 42–47. https://doi.org/10.7185/geochemlet.2226
    Pettke, T., Bretscher, A., 2022. Fluid-Mediated Element Cycling in Subducted Oceanic lithosphere: The Orogenic Serpentinite Perspective. Earth-Science Reviews, 225: 103896. https://doi.org/10.1016/j.earscirev.2021.103896
    Qiao, X. -Y., Xiong, J. -W., et al., 2025. Magnesium and Boron Isotope Evidence for the Generation of Arc Magma through Serpentinite-Mélange Melting. National Science Review, 12(1): nwae363. https://doi.org/10.1093/nsr/nwae363
    Qu, Y. R., Liu, S. G., Gamaleldien, H., 2025. Insights into Subduction-Zone Fluid-Rock Interactions and Carbon Cycling from Magnesium Isotopes of Subducted Ophiolitic Mélanges in the Arabian-Nubian Shield. Geochemistry, Geophysics, Geosystems, 26(3): e2024GC011918. https://doi.org/10.1029/2024gc011918
    Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335–356. https://doi.org/10.1016/s0009-2541(99)00106-0
    Sajona, F. G., Maury, R. C., Bellon, H., et al., 1993. Initiation of Subduction and the Generation of Slab Melts in Western and Eastern Mindanao, Philippines. Geology, 21(11): 1007.https://doi.org/10.1130/0091-7613(1993)0211007:iosatg>2.3.co;2 doi: 10.1130/0091-7613(1993)0211007:iosatg>2.3.co;2
    Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05B07. https://doi.org/10.1029/2003gc000597
    Sang, M., Tan, Z., Xiao, W. J., et al., 2023. Formation of the Eclogites of the Atbashi Complex, Kyrgyzstan, in a Subduction Zone Mélange Diapir. Communications Earth & Environment, 4: 434. https://doi.org/10.1038/s43247-023-01106-8
    Schmidt, M. W., Poli, S., 2014. Devolatilization during Subduction. In: Holland, H. D., Turekian, K. K., Rudnick, R. L., eds., Treatise on Geochemistry 4: The Crust. Elsevier, Amsterdam. 669–701. https://doi.org/10.1016/b978-0-08-095975-7.00321-1
    Syracuse, E. M., van Keken, P. E., Abers, G. A., 2010. The Global Range of Subduction Zone Thermal Models. Physics of the Earth and Planetary Interiors, 183(1/2): 73–90. https://doi.org/10.1016/j.pepi.2010.02.004
    Teng, F. Z., 2017. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219–287. https://doi.org/10.2138/rmg.2017.82.7
    Teng, F. Z., Li, W. Y., Ke, S., et al., 2010. Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74(14): 4150–4166. https://doi.org/10.1016/j.gca.2010.04.019
    Teng, F. Z., Hu, Y., Chauvel, C., 2016. Magnesium Isotope Geochemistry in Arc Volcanism. Proceedings of the National Academy of Sciences of the United States of America, 113(26): 7082–7087. https://doi.org/10.1073/pnas.1518456113
    Turner, S. J., Langmuir, C. H., 2022. An Evaluation of Five Models of Arc Volcanism. Journal of Petrology, 63(3): egac010. https://doi.org/10.1093/petrology/egac010
    Wang, S. J., Teng, F. Z., Li, S. G., et al., 2017. Tracing Subduction Zone Fluid-Rock Interactions Using Trace Element and Mg-Sr-Nd Isotopes. Lithos, 290: 94–103. https://doi.org/10.1016/j.lithos.2017.08.004
    Wang, S. J., Kang, J. T., Ding, X., et al., 2024. Magnesium Isotope Behavior in Oceanic Magmatic Systems: Constraints from Mid-Ocean Ridge Lavas from the East Pacific Rise. Earth and Planetary Science Letters, 638: 118739. https://doi.org/10.1016/j.epsl.2024.118739
    Wang, Y., He, Y. S., Ke, S., 2020. Mg Isotope Fractionation during Partial Melting of Garnet-Bearing Sources: An Adakite Perspective. Chemical Geology, 537: 119478. https://doi.org/10.1016/j.chemgeo.2020.119478
    Wood, B. J., Turner, S. P., 2009. Origin of Primitive High-Mg Andesite: Constraints from Natural Examples and Experiments. Earth and Planetary Science Letters, 283(1/2/3/4): 59–66. https://doi.org/10.1016/j.epsl.2009.03.032
    Yang, Q. C., Fang, W., Dai, L. Q., et al., 2025. Heavy Mo-Mg-O Isotopes Anomaly Observed in Orogenic Magmatism: Serpentinites Fingerprint in Paleo-Oceanic Subduction Zone Magmatism. Geophysical Research Letters, 52(11): e2025GL115040. https://doi.org/10.1029/2025gl115040
    Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., et al., 1994. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, Far Western Aleutians. Journal of Petrology, 35(1): 163–204. https://doi.org/10.1093/petrology/35.1.163
    Zhang, W., Kitagawa, H., Huang, F., 2025. Magnesium Isotope Composition of Volcanic Rocks from Cold and Warm Subduction zones: Implications for the Recycling of Subducted Serpentinites and Carbonates. Geochimica et Cosmochimica Acta, 391: 158–176. https://doi.org/10.1016/j.gca.2024.12.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(20) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return