| Citation: | Tao Hong, Zeli Jiang, Yongbao Gao, Zhang Zhang, Mingguo Zhai, Xingwang Xu, Jun Gao. Paragenetic Sequence of Li-Minerals in the 509 Daobanxi Lithium Pegmatite Deposit, Northwestern China: Implications for Lithium Mineralization in LCT-Type Pegmatites. Journal of Earth Science, 2025, 36(6): 2526-2545. doi: 10.1007/s12583-025-2044-x |
Understanding the formation of lithium-rich pegmatites is critical for meeting global lithium demand. The 509 Daobanxi Li pegmatite deposit, located in the West Kunlun orogenic belt of northwestern China, represents a significant example of an LCT-type (Li-Cs-Ta) pegmatite system. This study investigates the paragenetic sequence of lithium (Li) minerals and the factors controlling their crystallization, providing new insights into the magmatic-hydrothermal evolution of rare-element pegmatites. Pegmatite dikes exhibit distinct zonation, comprising a wall rock zone, a border zone (aplitic layer), and a core zone (pegmatitic layer), with Li mineralization concentrated in the pegmatitic and aplitic layers. The primary Li minerals include spodumene (Spd), montebrasite (Mbs), eucryptite (Ecr), elbaite (Elb), and lepidolite (Lpd), which crystallize in the order of spodumene → montebrasite → elbaite → lepidolite. Spodumene, the dominant Li-bearing mineral, crystallizes from a Li-saturated melt during the magmatic stage. Montebrasite, a Li-phosphate mineral, forms in P-rich environments, coexisting with spodumene and columbite-group minerals (CGM). During the magmatic-hydrothermal transition, elbaite crystallizes from a B-rich melt, exhibiting skeletal and patchy zoning due to undercooling and disequilibrium crystallization. Hydrothermal alteration leads to the breakdown of spodumene and the formation of secondary minerals such as eucryptite and lepidolite, with lepidolite being the final Li-bearing phase, enriched in fluorine. The coupled dissolution-precipitation processes during the magmatic-hydrothermal transition play a critical role in the remobilization and enrichment of rare elements such as Li, Nb, Ta, and Sn. This deposit, characterized by spodumene crystallization in the Spd + Quartz stability field (≥300 MPa, ≤725 ℃) and subsequent alteration to Ecr + quartz assemblages (270 ℃, 160 MPa), exhibits broader temperature-pressure conditions exceeding typical global pegmatites like Tanco, with no petalite formation observed due to its persistent exclusion from petalite stability fields throughout mineralization. The shear zone controls the pegmatite emplacement and lithium enrichment in the 509 Daobanxi lithium deposit, and its deformation-fluid coupling mechanism provides new insights for the exploration of LCT pegmatite deposits. The present study highlights the importance of understanding both magmatic and hydrothermal processes in the formation of LCT-type pegmatites and provides valuable insights for the exploration of critical metal resources in similar geological settings.
| Araujo, F. P., Hulsbosch, N., Muchez, P., 2021. High Spatial Resolution Raman Mapping of Complex Mineral Assemblages: Application on Phosphate Mineral Sequences in Pegmatites. Journal of Raman Spectroscopy, 52(3): 690–708. https://doi.org/10.1002/jrs.6040 |
| Araujo, F. P., Hulsbosch, N., Muchez, P., 2023. Paragenesis and Precipitation Stages of Nb-Ta-Oxide Minerals in Phosphorus-Rich Rare-Element Pegmatites (Buranga Dike, Rwanda). American Mineralogist, 108(2): 277–296. https://doi.org/10.2138/am-2022-8201 |
| Bibienne, T., Magnan, J. F., Rupp, A., et al., 2020. From Mine to Mind and Mobiles: Society's Increasing Dependence on Lithium. Elements, 16(4): 265–270. https://doi.org/10.2138/gselements.16.4.265 |
| Bowell, R. J., Lagos, L., de los Hoyos, C. R., et al., 2020. Classification and Characteristics of Natural Lithium Resources. Elements, 16(4): 259–264. https://doi.org/10.2138/gselements.16.4.259 |
| Cao, R., Gao, Y. B., Chen, B., et al., 2023. Pegmatite Magmatic Evolution and Rare Metal Mineralization of the Dahongliutan Pegmatite Field, Western Kunlun Orogen: Constraints from the B Isotopic Composition and Mineral-Chemistry. International Geology Review, 65(7): 1224–1242. https://doi.org/10.1080/00206814.2021.1899062 |
| Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites Revisited. The Canadian Mineralogist, 43(6): 2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005 |
| Černý, P., Ferguson, R. B., 1972. The Tanco Pegmatite at Bernic Lake, Manitoba; Ⅳ, Petalite and Spodumene Relations. The Canadian Mineralogist, 11(3): 660–678 |
| Chakoumakos, B. C., Lumpkin, G. R., 1990. Pressure-Temperature Constraints on the Crystallization of the Harding Pegmatite, Taos County, New Mexico. The Canadian Mineralogist, 28(2): 287–298 |
| Charoy, B., Noronha, F., Lima, A., 2001. Spodumene Petalite Eucryptite: Mutual Relationships and Pattern of Alteration in Li-Rich Aplite Pegmatite Dykes from Northern Portugal. The Canadian Mineralogist, 39(3): 729–746. https://doi.org/10.2113/gscanmin.39.3.729 |
| Ding, K., Liang, T., Yang, X. Q., et al., 2019. Geochronology, Petrogenesis and Tectonic Significance of Dahongliutan Pluton in Western Kunlun Orogenic Belt, NW China. Journal of Central South University, 26(12): 3420–3435. https://doi.org/10.1007/s11771-019-4264-7 |
| European Commission, 2023. Study on the Critical Raw Materials for the EU 2023 Final Report. European Commission, Brussels |
| Fan, J. J., Tang, G. J., Wei, G. J., et al., 2020. Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 352/353: 105236. https://doi.org/10.1016/j.lithos.2019.105236 |
| Gao, Y. B., Bagas, L., Li, K., et al., 2020. Newly Discovered Triassic Lithium Deposits in the Dahongliutan Area, NorthWest China: a Case Study for the Detection of Lithium-Bearing Pegmatite Deposits in Rugged Terrains Using Remote-Sensing Data and Images. Frontiers in Earth Science, 8: 591966. https://doi.org/10.3389/feart.2020.591966 |
| Gourcerol, B., Gloaguen, E., Melleton, J., et al., 2019. Re-Assessing the European Lithium Resource Potential—A Review of hard-Rock Resources and Metallogeny. Ore Geology Reviews, 109: 494–519. https://doi.org/10.1016/j.oregeorev.2019.04.015 |
| Grohol, M., Veeh, C., 2023. Study on the Critical Raw Materials for the EU 2023 Final Report. Publications Office of the European Union, Luxembourg |
| Hong, T., Hu, M. X., Tang, J. L., et al., 2024. Metallogenic Characteristics of Superimposed Deformation and Mineralization of Dahongliutan Granite-Pegmatite Type Lithium Deposit Belt in West Kunlun, Xinjiang: Constraints from Ore Structure, 3D Imaging Technology and Chronology. Acta Petrologica Sinica, 40(2): 553–570. https://doi.org/10.18654/1000-0569/2024.0553 (in Chinese with English Abstract) |
| Hong, T., Harlaux, M., Zhai, M. G., et al., 2025a. Syn-Tectonic Emplacement of Li-Bearing Pegmatites Related to Detachment Faulting in the Dahongliutan Pegmatite Belt, Western Kunlun, NW China. Mineralium Deposita. https://doi.org/10.1007/s00126-025-01352-0 |
| Hong, T., Zhang, Z., Jiang, Z. L., et al., 2025b. Coupled Dissolution-Precipitation Mineralized Process in Bailongshan Li Deposit, West Kunlun (NW China), Evidenced by the Mineralogy of Cassiterite, Columbite-Group Minerals and Elbaite. Journal of Earth Science, 36(3): 1033–1050. https://doi.org/10.1007/s12583-024-0096-y |
| Huang, T., Fu, X. F., Ge, L. Q., et al., 2020. The Genesis of Giant Lithium Pegmatite Veins in Jiajika, Sichuan, China: Insights from Geophysical, Geochemical as Well as Structural Geology Approach. Ore Geology Reviews, 124: 103557. https://doi.org/10.1016/j.oregeorev.2020.103557 |
| Huber, M., Kamiński, D. M., Maciołek, U., 2023. The Optical and Spectroscopic Properties of Fuchsite, Spodumene, and Lepidolite from Northern Scandinavia (Kautokeino, Kaustinen, Kolmozero). Materials, 16(14): 4894. https://doi.org/10.3390/ma16144894 |
| Huo, H. L., Chen, Z. L., Zhang, Q., et al., 2024. Quartz Deformation Characteristics, Deformation Temperature, and Their Constraints on Pegmatites of the 509 Daobanxi Lithium Deposit in the West Kunlun Area, Xinjiang. Journal of Geomechanics, 30(1): 72-87 (in Chinese with English Abstract) |
| Jahns, R. H., Burnham, C. W., 1969. Experimental Studies of Pegmatite Genesis; L, a Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64(8): 843–864. https://doi.org/10.2113/gsecongeo.64.8.843 |
| Jiang, S. Y., Su, H. M., Zhu, X. Y., et al., 2022. A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type. Journal of Earth Science, 33(5): 1095–1113. https://doi.org/10.1007/s12583-022-1736-8 |
| Li, J. K., Liu, C. Y., Liu, X., et al., 2019. Tantalum and Niobium Mineralization from F- and Cl--Rich Fluid in the Lepidolite-Rich Pegmatite from the Renli Deposit in Northern Hunan, China: Constraints of Fluid Inclusions and Lepidolite Crystallization Experiments. Ore Geology Reviews, 115: 103187. https://doi.org/10.1016/j.oregeorev.2019.103187 |
| Li, Y., Wang, W., Du, X. F., et al., 2022. 40Ar/39Ar Dating of Muscovite of the West 509 Daoban Li-Be Rare Metal Deposit in the West Kunlun Orogenic Belt and Its Limitation to Regional Mineralization. Geology in China, 49(6): 2031–2033. https://doi.org/10.12029/gc20220623 (inChinese with English Abstract) |
| Linnen, R. L., Van Lichtervelde, M., Černý, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275–280. https://doi.org/10.2113/gselements.8.4.275 |
| London, D., 1984. Experimental Phase Equilibria in the System LiAlSiO4-SiO2-H2O: A Petrogenetic Grid for Lithium-Rich Pegmatites. American Mineralogist, 69(11/12): 995–1004 |
| London, D., 2008. Pegmatites. Canadian Mineralogist Special Publication, 10: 114 |
| London, D., 2014. A Petrologic Assessment of Internal Zonation in Granitic Pegmatites. Lithos, 184–187: 74–104. https://doi.org/10.1016/j.lithos.2013.10.025 |
| London, D., Burt, D. M., 1982a. Alteration of Spodumene, Montebrasite and Lithiophilite in Pegmatites of the White Picacho District, Arizona. American Mineralogist, 67(1/2): 97–113 |
| London, D., Burt, D. M., 1982b. Chemical Models for Lithium Aluminosilicate Stabilities in Pegmatites and Granites. American Mineralogist, 67(5/6): 494–509 |
| London, D., Morgan, G. B., 2017. Experimental Crystallization of the Macusani Obsidian, with Applications to Lithium-Rich Granitic Pegmatites. Journal of Petrology, 58(5): 1005–1030. https://doi.org/10.1093/petrology/egx044 |
| London, D., Morgan, G. B., Hervig, R. L., 1989. Vapor-Undersaturated Experiments with Macusani Glass + H2O at 200 MPa, and the Internal Differentiation of Granitic Pegmatites. Contributions to Mineralogy and Petrology, 102(1): 1–17. https://doi.org/10.1007/bf01160186 |
| London, D., Wolf, M. B., Morgan, G. B., et al., 1999. Experimental Silicate-Phosphate Equilibria in Peraluminous Granitic Magmas, with a Case Study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40(1): 215–240. https://doi.org/10.1093/petrology/40.1.215 |
| Maneta, V., Baker, D. R., Minarik, W., 2015. Evidence for Lithium-Aluminosilicate Supersaturation of Pegmatite-Forming Melts. Contributions to Mineralogy and Petrology, 170(1): 4. https://doi.org/10.1007/s00410-015-1158-z |
| Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes: No Element Left Behind. Elements, 7(5): 313–319. https://doi.org/10.2113/gselements.7.5.313 |
| Matte, P., Tapponnier, P., Arnaud, N., et al., 1996. Tectonics of Western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters, 142(3/4): 311–330. https://doi.org/10.1016/0012-821x(96)00086-6 |
| Mattern, F., Schneider, W., 2000. Suturing of the Proto- and Paleo-Tethys Oceans in the Western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 18(6): 637–650. https://doi.org/10.1016/s1367-9120(00)00011-0 |
| Molnar, P., Burchfiel, B. C., Zhao, Z. Y., et al., 1987. Geologic Evolution of Northern Tibet: Results of an Expedition to Ulugh Muztagh. Science, 235(4786): 299–305. https://doi.org/10.1126/science.235.4786.299 |
| Munoz, J. L., 1971. Hydrothermal Stability Relations of Synthetic Lepidolite. American Mineralogist, 56(11/12): 2069–2087 |
| Pan, Y., 1996. Geological Evolution of the Karakorum and Kunlun Mountains. Seismological Press, Beijing (in Chinese) |
| Peng, H. L., He, N. Q., Wang, M. C., et al., 2018. Geological Characteristics and Metallogenic Regularity of the West Track 509 Rrare Polymetallic Deposit in Dahongliutan Region, Hetian, Xinjiang. Northwestern Geology, 51(3): 146–154 (in Chinese with English Abstract) |
| Pfister, J. D., Kontak, D. J., Groat, L. A., 2023. Textural and Mineralogical Evolution of the Little Nahanni Pegmatite Group (NWT, Canada) with Implications for Metasomatism, Rare-Metal Mineralization, and Pegmatite-Wall Rock Interaction. The Canadian Journal of Mineralogy and Petrology, 61(3): 467–505. https://doi.org/10.3749/2000086 |
| Qiao, G. B., Wu, Y. Z., Liu, T., 2020. Formation Age of the Dahongliutan Pegmatite Type Rare Metal Deposit in Western Kunlun Mountains: Evidence from Muscovite 40Ar/39Ar Isotopic Dating. Geology in China, 47(5): 1591–1593 (in Chinese with English Abstract) |
| Qiao, G. B., Zhang, H. D., Wu, Y. Z., et al., 2015. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics. Acta Geologica Sinica, 89(7): 1180–1194 (in Chinese with English Abstract) |
| Slack, J. F., Trumbull, R. B., 2011. Tourmaline as a Recorder of Ore-Forming Processes. Elements, 7(5): 321–326. https://doi.org/10.2113/gselements.7.5.321 |
| Stewart, D. B., 1978. Petrogenesis of Lithium-Rich Pegmatites. American Mineralogist, 63(9/10): 970–980 |
| Thomas, R., Davidson, P., 2013. The Missing Link between Granites and Granitic Pegmatites. Journal of Geosciences, 58: 183–200. https://doi.org/10.3190/jgeosci.135 |
| U. S. Geological Survey, Department of the Interior, 2022. Final List of Critical Minerals. Reston, VA, USA |
| Veksler, I. V., Thomas, R., 2002. An Experimental Study of B-, P- and F-Rich Synthetic Granite Pegmatite at 0.1 and 0.2 GPa. Contributions to Mineralogy and Petrology, 143(6): 673–683. https://doi.org/10.1007/s00410-002-0368-3 |
| Wang, H., Gao, H., Zhang, X. Y., et al., 2020. Geology and Geochronology of the Super-Large Bailongshan Li-Rb-(Be) Rare-Metal Pegmatite Deposit, West Kunlun Orogenic Belt, NW China. Lithos, 360/361: 105449. https://doi.org/10.1016/j.lithos.2020.105449 |
| Wang, H., Huang, L., Ma, H. D., et al., 2023. Geological Characteristics and Metallogenic Regularity of Lithium Deposits in Dahongliutan-Bailongshan Area, West Kunlun, China. Acta Geologica Sinica, 39(7): 1931–1949. https://doi.org/10.1111/1755-6724.14238 (in Chinese with English Abstract) |
| Wang, H., Li, P., Ma, H. D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6): 1053–1062. https://doi.org/10.16539/j.ddgzyckx.2017.06.005 (in Chinese with English Abstract) |
| Wang, W., Jiang, S. Y., Ge, W., et al., 2024. Geological Characteristics and Genetic Mechanism of the Lacustrine Sedimentary Clay Type Lithium Deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 64–78. https://doi.org/10.3724/j.issn.1007-2802.20240001 |
| Wolf, M. B., London, D., 1997. Boron in Granitic Magmas: Stability of Tourmaline in Equilibrium with Biotite and Cordierite. Contributions to Mineralogy and Petrology, 130(1): 12–30. https://doi.org/10.1007/s004100050346 |
| Xia, Y. Q., Tuo, M. J., Li, N., et al., 2024. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun. Earth Science, 49(3): 922–938. https://doi.org/10.3799/dqkx.2023.213 (in Chinese with English Abstract) |
| Xiao, W. J., Han, F. L., Windley, B. F., et al., 2003. Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia. International Geology Review, 45(4): 303–328. https://doi.org/10.2747/0020-6814.45.4.303 |
| Xing, C. M., Wang, C. Y., Wang, H., 2020. Magmatic-Hydrothermal Processes Recorded by Muscovite Andcolumbite-Group Minerals from the Bailongshan Rare-Element Pegmatites in the West Kunlun-Karakorum Orogenic Belt, NW China. Lithos, 364/365: 105507. https://doi.org/10.1016/j.lithos.2020.105507 |
| Xu, Z. Q., Zheng, B. H., Zhu, W. B., et al., 2023. Geologic Scenario from Granitic Sheet to Li-Rich Pegmatite Uncovered by Scientific Drilling at the Jiajika Lithium Deposit in Eastern Tibetan Plateau. Ore Geology Reviews, 161: 105636. https://doi.org/10.1016/j.oregeorev.2023.105636 |
| Yan, Q. H., Chi, G. X., Wang, H., et al., 2025. Sediment-Derived Granites as the Precursor of Rare-Metal Pegmatites in the Paleo-Tethys Tectonic Zone—Evidence from the Bailongshan Li-Rb-Be Pegmatite Ore Field and Factors Controlling Mineralization. Mineralium Deposita, 60(4): 743–764. https://doi.org/10.1007/s00126-024-01311-1 |
| Yan, Q. H., Qiu, Z. W., Wang, H., et al., 2018. Age of the Dahongliutan Rare Metal Pegmatite Deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb Dating of Columbite-(Fe) and Cassiterite. Ore Geology Reviews, 100: 561–573. https://doi.org/10.1016/j.oregeorev.2016.11.010 |
| Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-km-long Late Triassic Rare Metal (Li-Rb-Be-Nb-Ta) Ppegmatite Belt in the Western Kunlun Orogenic Belt, Western China. Economic Geology, 117(1): 213–236. https://doi.org/10.5382/econgeo.4858 |
| Yang, J., Zhang, Z. J., Cheng, Q. M., 2022. Resolution Enhancement in Micro-XRF Using Image Restoration Techniques. Journal of Analytical Atomic Spectrometry, 37(4): 750–758. https://doi.org/10.1039/d1ja00425e |
| Yang, Z. Y., Wang, R. C., Che, X. D., et al., 2022. Paragenesis of Li Minerals in the Nanyangshan Rare-Metal Pegmatite, Northern China: Toward a Generalized Sequence of Li Crystallization in Li-Cs-Ta-Type Granitic Pegmatites. American Mineralogist, 107(12): 2155–2166. https://doi.org/10.2138/am-2022-8285 |
| Yavuz, F., Karakaya, N., Yıldırım, D. K., et al., 2014. A Windows Program for Calculation and Classification of Tourmaline-Supergroup (IMA-2011). Computers Geosciences, 63: 70–87. https://doi.org/10.1016/j.cageo.2013.10.012 |
| Ye, X. Y., Li, B., Tan, D. B., et al., 2024. Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview. Journal of Earth Science, 35(6): 1878–1894. https://doi.org/10.1007/s12583-023-1972-1 |
| Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 |
| Yin, J., Bian, Q., 1995. Geologic Map of the Karakorum-Western Kunlun and Adjacent Regions, v. 1: Scale 1 : 2 000 000. Science Press, Beijing (in Chinese) |
| Yin, R., Huang, X. L., Xu, Y. G., et al., 2020. Mineralogical Constraints on the Magmatic-Hydrothermal Evolution of Rare-Elements Deposits in the Bailongshan Granitic Pegmatites, Xinjiang, NW China. Lithos, 352/353: 105208. https://doi.org/10.1016/j.lithos.2019.105208 |
| Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106–111. https://doi.org/10.16262/j.cnki.1000-8217.2019.02.002 (in Chinese with English Abstract) |
| Zhang, C. L., Zou, H. B., Ye, X. T., et al., 2018. Tectonic Evolution of the NE Section of the Pamir Plateau: New Evidence from Field Observations and Zircon U-Pb Geochronology. Tectonophysics, 723: 27–40. https://doi.org/10.1016/j.tecto.2017.11.036 |
| Zhang, X. Y., Wang, H., Yan, Q. H., 2022. Garnet Geochemical Compositions of the Bailongshan Lithium Polymetallic Deposit in Xinjiang Province: Implications for Magmatic-Hydrothermal Evolution. Ore Geology Reviews, 150: 105178. https://doi.org/10.1016/j.oregeorev.2022.105178 |
| Zhang, X. Y., Wang, H., Bai, H. Y., et al., 2024. Tourmaline Geochemical and Boron Isotopic Compositions of the Bailongshan Rare-Metal Pegmatite Deposit: Implications for Magmatic-Hydrothermal Evolution of the West Kunlun Orogen (NW China). Ore Geology Reviews, 166: 105894. https://doi.org/10.1016/j.oregeorev.2024.105894 |
| Zhang, Z. Y., Jiang, Y. H., Niu, H. C., et al., 2021. Fluid Inclusion and Stable Isotope Constraints on the Source and Evolution of Ore-Forming Fluids in the Bailongshan Pegmatitic Li-Rb Deposit, Xinjiang, Western China. Lithos, 380/381: 105824. https://doi.org/10.1016/j.lithos.2020.105824 |
| Zhang, Z., Liang, T., Feng, Y., et al., 2019. Geological Feature and Chronology Study of Kangxiwar Beryl-Bearing Muscovite Pegmatite in West Kunlun Orogen, Xinjiang. Northwestern Geology, 52: 75–88. https://doi.org/10.16583/j.nwgeol.2019.01.10 (in Chinese with English Abstract) |
| Zhao, H., Chen, B., Zheng, B. Q., et al., 2024. Petrogenesis of Mesozoic Pegmatites in the Dahongliutan Li-Mineralized Belt (Western Kunlun, NW China). Journal of Asian Earth Sciences, 264: 106076. https://doi.org/10.1016/j.jseaes.2024.106076 |
| Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484 |
| Zhu, M. T., Dong, Z. G., Zhang, L. C., 2023. Volatile Accumulation for the Mineralization of Li-Be Pegmatites in the Northeastern Pamir, Western Kunlun, China. International Geology Review, 65(8): 1354–1371. https://doi.org/10.1080/00206814.2022.2087109 |