Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 17 Issue 3
Sep 2006
Turn off MathJax
Article Contents
Y M PAN, S Botis, S Nokhrin. Applications of Natural Radiation-Induced Paramagnetic Defects in Quartz to Exploration in Sedimentary Basins. Journal of Earth Science, 2006, 17(3): 258-271, 208.
Citation: Y M PAN, S Botis, S Nokhrin. Applications of Natural Radiation-Induced Paramagnetic Defects in Quartz to Exploration in Sedimentary Basins. Journal of Earth Science, 2006, 17(3): 258-271, 208.

Applications of Natural Radiation-Induced Paramagnetic Defects in Quartz to Exploration in Sedimentary Basins

Funds:

the Natural Science and Engineering Re-search Council (NSERC) of Canada 

Cameco Corporation 

More Information
  • Corresponding author: Pan Y M, yuanming.pan@usask.ca
  • Received Date: 15 Mar 2006
  • Accepted Date: 25 Jun 2006
  • Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e.g., oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), which are amenable to study by electron paramagnetic resonance (EPR) spectroscopy. These natural radiation-induced paramagnetic defects, except for the oxygen vacancy centers, in quartz are concentrated in narrow bands penetrated by α particles: (1) in halos around U-and Th-bearing mineral inclusions and (2) in outer rims or along fractures. The second type of occurrence provides information about uranium mineralization or remobilization (i.e., sources of uranium, timing of mineralization or remobilization, pathways of uranium-bearing fluids). It can also be used to evaluate sedimentary basins for potential of uranium mineralization. In particular, the peroxy radicals are stable up to 800 ℃ and, therefore, are useful for evaluating metasedimentary rocks (e.g., Paleoproterozoic metasedimentary sequences in the central zone of the North China craton). EPR study of the Changcheng Series can focus on quartz from the sediment-basement unconformity and faults to determine the presence and types of natural radiation-induced paramagnetic defects, with which to identify and prioritize uranium anomalies. Other potential applications of natural radiation-induced paramagnetic defects in quartz include uranium- bearing hydrocarbon deposits in sedimentary basins. For example, the Junggar, Ordos, and Tarim basins in northwestern China all contain important oil and natural gas fields and are well known for elevated uranium concentrations, including economic sandstone-hosted uranium deposits. Therefore, systematic studies on the distribution of natural radiation-induced paramagnetic defects in quartz from host sedimentary sequences are expected to provide information about the migration of oil and natural gas in those basins.

     

  • loading
  • Baker, J. M., Robinson, P. T., 1983. EPR of a New Defectin Natural Quartz: Possible O2-. Solid State Communica-tion, 48: 551-554.
    Beall, G. H., 1994. Industrial Applications of Silica. Reviewsin Mineralogy, 29: 469-505.
    Bershov, L. V., Martirosyan, V. O., Marfunin, A. S., et al., 1975. EPR and Structural Models for Radical Ions in Anhydrite Crystals. Forschritte Der Mineralogie, 52: 591-604.
    Boero, M., Pasquarello, A., Sarnthein, J., et al., 1997. Structure and Hyperfine Parameters of Eí Centers in α-Quartz and Vitreous SiO2. Physical Review Letters, 78: 887-890.
    Botis, S. M., Nokhrin, S., Pan, Y., et al., 2005. Natural Radiation-Induced Damage in Quartz. Part Ⅰ. Correla-tions between Cathodoluminescence Colors and Paramag-netic Defects. Canadian Mineralogist, 43: 1565-1680.
    Botis, S. M., Pan, Y., Bonli, T., et al., 2006a. Natural Radiation-Induced Damage in Quartz. Part Ⅱ. I mplica-tions for Uranium Mineralizationin the Athabasca Basin. Canadian Mineralogist (Accepted).
    Botis, S. M., Pan, Y., Nokhrin, S., 2006b. Natural Radiation-Induced Damage in Quartz. Part Ⅲ. A Single-Crystal EPR Study. GAC-MAC Abstract, 31: 18.
    Cai, C., Qing, M., Li, H., et al., 2006. Biogenic and Petroleum-Related Ore-Forming Processes in the Dongsheng Uranium Deposits, NW China. Ore Geology Review (in Press).
    Carbonaro, C. M., Fiorentini, V., Berardini, F., 2001. Proof of the Thermodynamical Stability of the E' Center in SiO2. Physical Review Letters, 86: 3064-3067.
    Chen, Z. B., Zhao, F. M., Xiang, W. D., et al., 2000. Uranium Provinces in China. Acta Geologica Sinica, 74: 587-594.
    Chen, J. P., Huang, D. F., 1997. The Source of Oils in Ju-rassic Coal Mineinthe Southeast Ordos Basin. Acta Sed-imentologica Sinica, 15: 100-104 (in Chinese with English Abstract).
    Dahlkamp, F. J., 1993. Uranium Ore Deposits. Springer-Verlag, New York.
    Derry, D. R., 1980. Uranium Deposits through Ti me. In: Strangway, D. W., ed., The Continental Crust and Its Mineral Deposits. Geological Association of Canada Special Paper, 20: 625-632.
    Edwards, A. H., Fowler, B. W., 1986. Theory of the Peroxy-Radical Defect in α-SiO2. Physical Review, B26: 6649-6660.
    England, G. L., Rasmussen, B., Krapez, B., et al., 2002. Archaean Oil Migration in the Witwatersrand Basin of South Africa. Journal of the Geological Society, 159: 189-201.
    Fayek, M., Kyser, T. K., 1997. Characterization of Multiple Fluid-Flow Events and Rare-Earth Element Mobility As-sociated with Formation of Unconformity-Type Uranium Deposits inthe Athabasca Basin, Saskatchewan. Canadian Mineralogist, 35: 627-658.
    Feigl, F. J., Anderson, J. H., 1970. Defects in Crystalline Quartz: Electron Paramagnetic Resonance of E' Vacancy Centers Associated with Germanium Impurities. Journalof Physical Chemistry, Solids, 31: 575-596.
    Feigl, F. J., Fowler, B. W., Yip, K. L., 1974. Oxygen Vacancy Model in the Eí Center in SiO2. Solid State Communication, 14: 225-229.
    Friebele, E. J., Griscom, D. L., Stapelbroek, M., et al., 1979. Fundamental Defect Centers in Glass: The Peroxy Radical in Irradiated, High-Purity, Fused Silica. Physical Review Letters, 42: 1346-1349.
    Garrison, E. G., Rowlett, R. M., Cowan, D. L., et al., 1981. ESR Dating of Ancient Flints. Nature, 290: 44-45.
    Griscom, D. L., 1980. E' Center in Glassy SiO2: 17O, 1H, and "Very Weak" 29Si Superhyperfine Structure. Physical Review, B22: 4192-4202.
    Griscom, D. L., 1989. Self-Trapped Holes in Amorphous Sili-con Dioxide. Physical Review, B40: 4224-4228.
    Griscom, D. L., 1990. Growth and Decay Kinetics of Defect Centers in High-Purity Fused Silicas Irradiated at 77 Kwith X-Rays or 6.4-eV Laser Light. Nuclear Instruments & Methods in Physics Research, B46: 12-17.
    Griscom, D. L., Friebele, E. J., 1981. Fundamental Defect Centres in Glass: 29Si Hyperfine Structure of the Non-bridging Oxygen Hole Centre and the Peroxy Radical in α-SiO2. Physical Review, B24: 4896-4898.
    Hayes, W., Jenkin, T. J. L., 1986. Charge Trapping Prop-erties of Germanium in Crystalline Quartz. Journal of Physics C: Solid State Physics, 19: 6211-6219.
    Halliburton, L. E., Perlson, B. D., Weeks, R. A., et al., 1979. EPR Study of the E4' Center in α-Quartz. Solid State Communication, 30: 575-579.
    Hochstrasser, G., Antonini, J. F., 1972. Surface States of Pristine Silica Surfaces 1. ESR Studies of E's Dangling Bonds and of CO2-Adsorbed Radicals. Surface Science, 32: 644-664.
    Ikeya, M., 1993. New Applications of Electron Paramagnetic Resonance: ESR Dating, Dosi metry, and Spectroscopy. World Scientific, Singapore. 500.
    Isoya, J., Weil, J. A., Halliburton, L. E., 1981. EPR andab Initio SCF-MO Studies of the Si·H-Si Systemin the E4' Center of Alpha-Quartz. Journal of Chemical Physics, 74: 5436-5448.
    Jani, M. G., Bossoli, R. B., Halliburton, L. E., 1983. Further Characterization of the E1' Centre in Crystalline SiO2. Physical Review, B27: 2285-2293.
    Komuro, K., Horicawa, Y., Toyoda, S., 2002. Develop-ment of Radiation-Damage Halos in Low-Quartz: Cath-odoluminescence Measurements after He+ Implantation. Mineralogy and Petrology, 76: 261-266.
    Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22: 383-397.
    Liu, C., Zhu, X., Zeng, Q., 2005. Reservoir Diagenetic Se-quence and Pore Evolution of Sulige Gas Field in the Or-dos Basin. Natural Gas Industry, 25: 1-3 (in Chinesewith English Abstract).
    Liu, S. W., Pan, Y., Xie, Q., et al., 2004. Archean Geo-dynamics in the Central Zone, North China Craton: Con-straints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes. Precam-brian Research, 130: 229-249.
    Marfunin, A. S., 1979. Spectroscopy, Luminescence and Ra-diation Centers in Minerals. Springer, Berlin. 352.
    Mashkovtsev, R. I., Scherbakova, M. Y. A., Solntsev, V. P., 1978. EPR of Radiation Oxygen Hole Centres in α-Quartz. Tr. Inst. Geol. Geofiz., Akad. Nauk SSSR, Sib. Otd., 385: 78-86.
    McClelland, J. D., Donoghue, J. J., 1953. The Effect ofNeutron Bombardment upon the Magnetic Susceptibilityof Several Pure Oxides. Journal of Applied Physics, 24: 963.
    McMorris, D. W., 1970. ESR Detection of Fossil Alpha Dam-age in Quartz. Nature, 226: 146-148.
    Milodowski, A. E., West, J. M., Pearce, J. M., et al., 1990. Uranium Mineralized Microorganisms Associatedwith Uraniferous Hydrocarbons in Southwest Scotland. Nature, 347: 465-467.
    Mossman, D. J., 2001. Paleoproterozoic Franceville Series, Republic of Gabon. Energy Sources, 23: 45-53.
    Mossman, D. J., Nagy, B., Davis, D. W., 1993. Hydro-thermal Alteration of Organic Matter in Uranium Ores, Elliot Lake, Canada: I mplications for Selected Organic-Rich Deposits. Geochi mica et Cosmochi mica Acta, 57: 3521-3259.
    Odom, A. L., Rink, W. J., 1989. Natural Accumulation of Shottky-Frenkel Defects: Implications for a Quartz Geochronometer. Geology, 17: 55-58.
    Owen, M. R., 1988. Radiation-Damage Haloes in Quartz. Geology, 16: 529-532.
    Parnell, J., 1988. Metal Enrichments in Solid Bitumens: AReview. Mineralium Deposita, 23: 191-199.
    Robertson, D. S., Tilsley, J. E., Hogg, G. M., 1978. The Ti me-Bound Character of Uranium Deposits. Economic Geology, 73: 1409-1419.
    Rudra, J. K., Fowler, W. B., 1987. Oxygen Vacancy andthe E1' Center in Crystalline SiO2. Physical Review, B35: 8223-8230.
    Sassen, R., Sweet, S. T., DeFreitas, D. A., et al., 2004. Brine Vents on the Gulf of Mexico Slope: Hydrocarbons, Carbonate-Barite-Uranium Mineralization, Red Beds, and Life in an Extreme Environment. 2004 Gulf Coast Sec-tion. Societyof Economic Paleontologists and Mineralo-gists, 24: 258-270.
    Shluger, A., Stefanovich, E., 1990. Models for the Self-trapped Exciton and Nearest-Neighbor Defect Pair in SiO2. Physical Review, B42: 9664-9673.
    Silsbee, R. H., 1961. Electron Spin Resonance in Neutron-Irradiated Quartz. Journal of Applied Physics, 32: 1459-1462.
    Solntsev, V. P., Mashkovtsev, R. I., Shcherbakova, M. Y., 1977. Electron Paramagnetic Resonance of the Radi-ation Centers in Quartz. Journal of Structural Chemistry, 18: 578-583.
    Stapelbroek, M., Griscom, D. L., Fiegele, E. J., et al., 1979. Oxygen-Associated Trapped-Hole Centers in High-Purity Fused Silicas. Journal of Non-Crystalline Solids, 32: 313-324.
    Sun, Z. C., Xie, Q. Y., Yang, J. J., 1989. The Ordos Ba-sin—A Typical Example of an Unstable Cratonic Interior Superi mposed Basin. In: Zhu, X., ed., Chinese Sedi-mentary Basins. Elsevier, Amsterdam. 63-75.
    Uchino, T., Takahashi, M., Yoko, T. 2001. Strcuture and Generation Mechanism of the Peroxy-Radical Defct in Amorphous Silica. Physical Review Letters, 86: 4560-4563.
    Walsby, C. J., Lees, N. S., Claridge, R. F. C., et al., 2003. The Magnetic Properties of Oxygen-Hole Alumi-num Centres in Crystalline SiO2. Ⅵ: A Stable Al O4/LiCentre. Canadian Journal of Physics, 81: 583-598.
    Weeks, R. A., 1956. Paramagnetic Resonance of Lattice De-fects in Irradiated Quartz. Journal of Applied Physics, 27: 1376-1381.
    Weeks, R. A., 1963. Paramagnetic Spectra of E2' Centers in Crystalline Quartz. Physical Review, 130: 570-577.
    Weeks, R. A., Nelson, C. M., 1960. Irradiation Effects and Short-Range Order in Fused Silica and Quartz. Journalof Applied Physics, 31: 1555-1558.
    Weil, J. A., 1984. A Review of Electron Spin Resonance and Its Applications to the Study of Paramagnetic Defects in Crystalline Quartz. Physics and Chemistry of Minerals, 10: 149-165.
    Weil, J. A., 2000. A Demi-century of Magnetic Defects in α-Quartz. In: Pacchioni, G., Skuja, L., Griscom, D. L., eds., Defects in SiO2and Related Dielectrics: Sciencesand Technology. Kluwer Academic, Netherlands. 197-212.
    Xiao, S., Knoll, A. H., Kauf man, A. J., et al., 1997. Neoproterozoic Fossils in Mesoproterozoic Rocks? Chem-ostratigraphic Resolution of a Biostratigraphic Conundrumfromthe North China Platform. Precambrian Research, 84: 197-220.
    Yang, J. J., 1995. Situation and Prospect of Petroleum Explo-ration of the Central Gasfield in Shaanganning Basin. China Oil & Gas, (2): 10-13.
    Yip, K. L., Fowler, W. B., 1975. Electronic Structure of E1' Centres in SiO2. Physical Review, B11: 2327-2338.
    Zhang, G., Wasyliuk, K., Pan, Y., 2001. The Characteriza-tion and Quantitative Analysis of Clay Minerals in the Athabasca Basin, Saskatchewan: Application of Short-wave Infrared Reflectance Spectroscopy. Canadian Min-eralogist, 39: 1347-1363.
    Zhao, T. P., Zhou, M. F., Zhai, M., et al., 2002. Paleo-proterozoic Rift-Related Volcanismof the Xiong' er Group, North China Craton: I mplications for the Breakup of Co-lumbia. International Geology Review, 44: 336-351.
    Zhao, M. W., Behr, H. J., Ahrendt, H., et al., 1996. Thermal and Tectonic History of the Ordos Basin, Chi-na: Evidence from Apatite Fission Track Analysis, Vit-rinite Reflectance and K-Ar Dating. AAPG Bulletin, 80: 1110-1134.
    Qiao, X. F., Gao, L. Z., Peng, Y., 2002. Neoproterozoic in Paleo-Tanlu Fault Zone—Catastrophe Sequence Biostratigraphy. Geological Publishing House, Beijing. 1-128(in Chinese)
    Qiao, X. F., Song, T. R., Gao, L. Z., 1994. Seisimic Sequence in Carbonate Rocks by Vibarational Liquefaction. Acta Geologica Sinica, 68: 29-35(in Chinese with English Abstract)
    Read, J. F., 1985. Carbonate Platform Facies Models. AAPG, 69: 1-21
    Schwazacher, W., 1993. Cyclostratigraphy and the Milankovitch Theory. Elsevier, Amsterdam. 1-382
    Smith, A. G., 1968. The Origin and Deformation of Some "Molar-Tooth" Structure in the Precambrian Belt-Purcell Supergroup. Journal of Geology, 76: 426-443
    Song, T. R., Zhao, Z., Wang, C. Y., 1991. Proterozoic Sedimentary Rocks in North China. Beijing Science and Technology Press, Beijing. 1-239(in Chinese)
    Xing, Y. S., Gao, Z. J., Liu, G. Z., et al., 1989. The Upper Precambrian in China. Geological Publishing House, Beijing. 1-413(in Chinese)
    Zhao, Z., 1994. Strmatolites. In: Feng, Z. Z., Wang, Y. H., Liu, H. J., et al., eds., Sedimentology of China. Petroleum Industry Press, Beijing. 302-316(in Chinese)
    Zhu, S. X., Xing, Y. S., Zhang, P. Y., 1994. Biostratigraphic Sequence of the Middle-Upper Proterozoic in North China Platform. Geological Publishing House, Beijing. 1-336(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views(798) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return