Citation: | Xianyu Huang, Dan Jiao, Liqiang Lu, Junhua Huang, Shucheng Xie. Distribution and Geochemical Implication of Aromatic Hydrocarbons across the Meishan Permian-Triassic Boundary. Journal of Earth Science, 2006, 17(1): 49-54. |
Aromatic compounds extracted from sedimentary rocks can reflect environmental conditions, organic sources and maturity. The aromatics, identified in association with mass extinction in particular, would provide a signature assisting our understanding of the causes of the biotic crisis. Aromatic hydrocarbons were fractionated from the total lipid extracts of 37 samples taken from the Permian-Triassic boundary (beds 23 to 34) of section B at Meishan (煤山), Zhejiang (浙江) Province in South China. These aromatics were analyzed by using gas chromatography-mass spectrometry (GC-MS). Main compounds identified include naphthalene, phenanthrenes, fluorene, dibenzothiophene, dibenzofuran, fluoranthene, pyrene and some of their methyl homologues. The indices of methyl phenanthrene distribution fraction indicate the comparable maturity (within the oil window, 0.7%-1.0% of the mean vitrinite reflectance) of the organic matter throughout the whole profile analyzed. The ratio of dibenzothiophene to phenanthrene (DBT/PHN) varies generally at a comparable pace with lithology. Significantly, a gradual decrease of this ratio was observed within bed 24 limestone, which is probably due to the variation of sedimentary environment. This change is in line with the drop in the carbon isotope composition of carbonate, the loss of the Changhsingian reef ecosystem, and the decrease of cyanobacteria abundance within the bacteria population. The coincidence of these records suggests a close relation between the biotic crisis and marine environmental conditions, and these records clearly show the onset of the biotic crisis prior to event bed 25.
Cao, C. Q., Wang, W., Jin, Y. G., 2002. The Carbon Isotope Change in the Meishan Permian-Triassic Transition, Zhejiang Province. Chinese Science Bulletin, 47(4): 302-306 (in Chinese) doi: 10.1360/02tb9072 |
Grice, K., Cao, C., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307: 706-709 doi: 10.1126/science.1104323 |
Hajime, M., Akira, S., 1999. Distribution of Polycyclic Aromatic Hydrocarbon in the K/T Boundary Sediments at Kawaruppu, Hokkaido, Japan. Geochemical Journal, 33: 305-315 doi: 10.2343/geochemj.33.305 |
Huges, W. B., Holba, A. G., Dzou, I. P., 1995. The Ratios of Dibenzothiophene to Phenanthrene and Pristine to Phytane as Indicators of Depositional Environment and Lithology of Petroleum Source Rocks. Geochimica et Cosmochimica Acta, 59(17): 3581-3598 doi: 10.1016/0016-7037(95)00225-O |
Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian-Triassic Boundary in South China. Science, 289: 432-436 doi: 10.1126/science.289.5478.432 |
Kvalheim, O. M., Christy, A. A., Telnaes, N., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51: 1883-1888 doi: 10.1016/0016-7037(87)90179-7 |
Lin, R. Z., Wang, P. R., Dai, Y. J., et al., 1987. The Petroleum Geochemistry Implications of the Polycyclic Aromatic Hydrocarbons in the Mineral Fuel. In: The Chinese Geology Academic Association Petroleum Geology Professional Committee, ed., The Organic Geochemistry Thesis Gathers. Geological Publishing House, Beijing. 129-140 (in Chinese) |
Lu, L., Tong, J., 2002. Alkane Biomarkers in PermianTriassic Boundary Strata at Meishan Section, Changxing, Zhejiang Province. Journal of China University of Geosciences, 13(2): 177-181 |
Mackenzie, A. S., 1984. Applications of Biological Markers in Petroleum Geochemistry. In: Brooks, J., Welte, D., eds., Advances in Petroleum Geochemistry. Academic Press, London. 114-214 |
Pancost, R. D., Crawford, N., Maxwell, J. R., 2002. Molecular Evidence for Basin-Scale Photic Zone Euxinia in the Permian Zechstein Sea. Chemical Geology, 188: 217-227 doi: 10.1016/S0009-2541(02)00104-3 |
Payne, J. L., Lehrmann, D. J., Wei, J., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305: 506-509 doi: 10.1126/science.1097023 |
Philip, R. P., Bakel, A., Galvez-Sinibald, A., et al., 1988. A Comparison of Organosulphur Compounds Produced by Pyrolysis of Asphaltenes and Those Present in Related Crude Oils and Tarsands. Org. Geochem. , 13: 915-926 doi: 10.1016/0146-6380(88)90245-8 |
Radkle, M., Welte, D. H., Willsch, H., 1982. Geochemical Study on a Well in the Western Canada Basin: Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter. Geochimica et Cosmochimca Acta, 46: 1-10 doi: 10.1016/0016-7037(82)90285-X |
Reichow, M. K., Saunders, A. D., White, R. V., et al., 2002. 40Ar/39Ar Dates from the West Siberian Basin: Siberian Flood Basalt Province Doubled. Science, 296: 1846-1849 doi: 10.1126/science.1071671 |
Schwab, V., Spangenberg, J. E., 2004. Organic Geochemistry across the Permian-Triassic Transition at the Idrijca Valley, Western Slovenia. Applied Geochemistry, 19: 55-72 doi: 10.1016/S0883-2927(03)00127-6 |
Sicre, M. A., Marty, J. C., Saliot, A., et al., 1987. Aliphatic and Aromatic Hydrocarbons in Different Sized Aerosols over the Mediterranean Sea: Occurrence and Origin. Atmospheric Environment, 21: 2247-2259 doi: 10.1016/0004-6981(87)90356-8 |
Silliman, J. E., Li, M., Yao, H., et al., 2002. Molecular Distributions and Geochemical Implications of Pyrolic Nitrogen Compounds in the Permian Phosphoria Formation Derived Oils of Wyoming. Organic Geochemistry, 33: 527-544 doi: 10.1016/S0146-6380(02)00018-9 |
Venkatesan, M. I., Dahl, J., 1989. Organic Geochemical Evidence for Global Fires at the Cretaceous/Tertiary Boundary. Nature, 338: 57-60 doi: 10.1038/338057a0 |
Wang, P. R., 1993. The Mass Chromatograph of Biomarkers. Petroleum Industry Press, Beijing. 60-65 (in Chinese) |
Weidlich, O., 2002. Permian Reefs Re-examined: Extrinsic Control Mechanisms of Gradual and Abrupt Changes during 40 My of Reef Evolution. Geobios, 35(Suppl. 1): 287-294 |
Xie, S., Pancost, R. D., Yin, H., et al., 2005. Two Episodes of Microbial Change Coupled with Permo/Triassic Faunal Mass Extinction. Nature, 434: 494-497 doi: 10.1038/nature03396 |
Yang, Z. Y., Wu, S. B., Yin, H. F., et al., 1991. Geological Events of Permo-Triassic Transitional Period in South China. Geological Publishing House, Beijing (in Chinese) |
Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102-114 doi: 10.18814/epiiugs/2001/v24i2/004 |
Yin, H., Tong, J., 1998. Multidisciplinary High-Resolution Correlation of the Permian-Triassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 143: 199-212 doi: 10.1016/S0031-0182(98)00111-4 |
Zhang, K. X., Lai, X. L., Ding, M. H., et al., 1995. Conodont Sequence and Its Global Correlation of PermianTriassic Boundary in Meishan Section, Changxing, Zhejiang Province. Earth Science—Journal of China University of Geosciences, 20(6): 669-678 (in Chinese with English Abstract) |
Zhang, K. X., Tong, J. N., Yin, H. F., et al., 1996. Sequence Stratigraphy of the Permian-Triassic Boundary Section of Changxing, Zhejiang. Acta Geologica Sinica, 70(3): 270-283 |