Citation: | De-yi XU, Xian-zhong KE, Shu-yun XIE, Qiu-ming CHENG. Scaling Properties of Feldspar and Quartz in Micro-images of Ideal Granites. Journal of Earth Science, 2008, 19(4): 327-333. |
The properties of feldspar and quartze are studied in this article from a fractal point of view using gray-scale micro-images of granite samples collected at the Fangshan (房山) granite body in Hebei (河北) Province, China, which can be regarded as an ideal granite in the sense of Vistelius. We found that there exist power-law relationships between the eigenvalues of the gray-scale matrices and their ranks for the feldspar and quartz. The fractal model used here is a λ-R model similar to the N-λ model proposed by Qiuming Cheng in 2005. Meanwhile, we found that average variances for the gray-scale matrices of feldspar are larger than those of quartz on the same sections, and this may be useful for auto-identification of feldspar and quartz as well as other minerals.
Badii, R., Politi, A., 1984. Hausdorff Dimension and Uniformity of Strange Attractors. Physical Review Letters, 52 (19): 1661-1664. doi: 10.1103/PhysRevLett.52.1661 |
Badii, R., Politi, A., 1985. Statistical Description of Chaotic Attractors: The Dimension Function. J. Statistical Physics, 40 (5-6): 725-750. doi: 10.1007/BF01009897 |
Cheng, Q., 1997. Discrete Multifractals. Mathematical Geology, 29 (22): 245-266. |
Cheng, Q., 1999a. Multifractality and Spatial Statistics. Computers & Geosciences, 25 (9): 949-961. |
Cheng, Q., 1999b. The Gliding Box Method for Multifractal Modeling. Computers & Geosciences, 25 (9): 1073-1079. |
Cheng, Q., 2004. A New Model for Quantifying Anisotropic Scale Invariance and for Decomposition of Mixing Patterns. Mathematical Geology, 36 (3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a |
Cheng, Q., 2005a. Multifractal Distribution of Eigenvalues and Eigenvectors from 2D Multiplicative Cascade Multifractal Fields. Mathematical Geology, 37 (8): 915-927. doi: 10.1007/s11004-005-9223-1 |
Cheng, Q., 2005b. Multiplicative Cascade Mineralization Processes and Singular Distribution of Mineral Deposit Associated Geochemical Anomalies. Proceeding of IAMG'05: GIS and Spatial Analysis, 1: 297-302. |
Cheng, Q., 2007. Multifractal Imaging and Decomposition Methods in Space, Fourier Frequency, and Eigen Domains. Nonlin. Processes Geophys., 14: 293-303. doi: 10.5194/npg-14-293-2007 |
Cheng, Q., 2008. A Combined Power-Law and Exponential Model for Streamflow Recessions. J. of Hydrology, 352: 157-167. doi: 10.1016/j.jhydrol.2008.01.017 |
Cheng, Q., Agterberg, F. P., Ballantyne, S. B., 1994. The Separation of Geochemical Anomalies from Background by Fractal Methods. Journal of Geochemical Exploration, 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2 |
Chhabra, A. B., Sreenivasan, K. R., 1991. Negative Dimensions: Theory, Computation and Experiment. Physical Review A, 43: 1114-1117. doi: 10.1103/PhysRevA.43.1114 |
Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifrtactal Measures. In: Peitgen, H. O., Jürgens, H., Saupe, D., eds., Chaos and Fractals. Springer-Verlag, New York. 922-953. |
Frisch, U., Parisi, G., 1985. On the Singularity Structure of Fully Developed Turbulence. In: Ghil, M., Benzi, R., Parisi, G., eds., Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. North-Holland, New York. 84-88. |
Grassberger, P., 1983. Generalized Dimensions of Strange Attractors. Physics Letters A, 97A (6): 227-230. |
Gulbin, Y. L., Evangulova, E. B., 2003. Morphometry of Quartz Aggregates in Granites: Fractal Images Reference to Nucleation and Growth Processes. Mathematical Geology, 35 (7): 819-833. doi: 10.1023/B:MATG.0000007781.90498.5e |
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., 1986. Fractal Measures and Their Singularities: The Characterization of Strange Sets. Phys. Rev. A, 33: 1141-1151. doi: 10.1103/PhysRevA.33.1141 |
Hentschel, H. G. E., Procaccia, I., 1983. The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors. Physica, 8 (D): 435-444. |
Jamtveit, B., 1991. Oscillatory Zonation Patterns in Hydrothermal Grossular-Andradite Garnet: Nonlinear Dynamics in Regions of Immiscibility. American Mineralogist, 76: 1319-1327. |
Jamtveit, B., Ragnarsdottir, K. V., Wood, B. J., 1995. On the Origin of Zoned Grossular-Andradite Garnets in Hydrothermal Systems. European Journal of Mineralogy, 7 (6): 1399-1410. doi: 10.1127/ejm/7/6/1399 |
L'Heureux, I., Fowler, A. D., 1996. Dynamical Model of Oscillatory Zoning in Plagioclase with Nonlinear Partition Relation. Geophysical Research Letters, 23 (1): 17-20. doi: 10.1029/95GL03327 |
Li, Q., Cheng, Q., 2004. Fractal Singular-Value (Egin-Value) Decomposition Method for Geophysical and Geochemical Anomaly Reconstruction. Earth Science—Journal of China University of Geosciences, 29 (1): 109-118 (in Chinese with English Abstract). |
Mandelbrot, B. B., 1972. Possible Refinement of the Lognormal Hypothesis Concerning the Distribution of Energy Dissipation in Intermittent Turbulence. In: Rosenblatt, M., Van Atta, C., eds., Statistical Models and Turbulence, Lecture Notes in Physics 12. Springer, New York. 333-351. |
Mandelbrot, B. B., 1974. Intermittent Turbulence in Self-Similar Cascades: Divergence of High Moments and Dimension of the Carrier. J. Fluid Mechanics, 62: 331-358. doi: 10.1017/S0022112074000711 |
Paladin, G., Vulpiani, A., 1987. Anomalous Scaling Laws in Multifractal Objects. Physical Reports, 156: 147-225. doi: 10.1016/0370-1573(87)90110-4 |
Schertzer, D., Lovejoy, S., 1991. Nonlinear Variability in Geophysics. Kluwer Academic Publ., Dordrecht, The Netherlands. 318. |
Tan, Y., Ye, J., 1987. Guide of Field Practice and Geology Teaching in Beijing Zhoukoudian Area. China University of Geosciences Press, Wuhan. 52 (in Chinese). |
Vistelius, A. B., 1972. Ideal Granite and Its Properties: I, The Stochastic Model. Mathematical Geology, 4 (2): 89-102. doi: 10.1007/BF02080295 |
Vistelius, A. B., Agterberg, F. P., Divi, S. R., et al., 1983. A Stochastic Model for the Crystallization and Textural Analysis of a Fine Grained Granitic Stock near Meech Lake, Gatineau Park, Quebec. Paper-Geological Survey of Canada, 81-21: 62. |
Wang, J., Wu, J., 1995. Oscillatory Zonation of Minerals and Self-Organization in Silicate Solid-Solution Systems: A New Nonlinear Dynamic Model. European Journal of Mineralogy, 7 (5): 1089-1100. doi: 10.1127/ejm/7/5/1089 |
Wang, Y., Merino, E., 1992. Dynamic Model of Oscillatory Zoning of Trace Elements in Calcite: Double Layer, Inhibition, and Self-Organization. Geochimica et Cosmochimica Acta, 56 (2): 587-596. doi: 10.1016/0016-7037(92)90083-U |
Wang, Z., Cheng Q., Xu, D., et al., 2007a. Fractal Modeling of Sphalerite Banding in Jinding Pb-Zn Deposit, Yunnan, Southwestern China. Journal of China University of Geosciences, 19 (1): 77-84. |
Wang, Z., Cheng, Q., Cao, L., et al., 2007b. Fractal Modelling of the Microstructure Property of Quartz Mylonite during Deformation Process. Mathematical Geology, 39 (1): 53-68. doi: 10.1007/s11004-006-9065-5 |
Xu, D., Cheng, Q., Agterberg, F., 2007. Scaling Property of Ideal Granitic Sequences. Nonlin. Processes Geophys., 14: 237-246. doi: 10.5194/npg-14-237-2007 |
Zhao, W., 2003. The Geology and Geological Field Work Method and the Application of Hi-Tech to Zhoukoudian. China University of Geosciences Press, Wuhan. 21-24 (in Chinese). |