Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 18 Issue 1
Feb 2007
Turn off MathJax
Article Contents
Shuhong WANG, Wen YAN, Haibin SONG. Change of Gas Hydrate Reservoir and Its Effect on the Environment in Xisha Trough since the Last Glacial Maximum. Journal of Earth Science, 2007, 18(1): 39-48.
Citation: Shuhong WANG, Wen YAN, Haibin SONG. Change of Gas Hydrate Reservoir and Its Effect on the Environment in Xisha Trough since the Last Glacial Maximum. Journal of Earth Science, 2007, 18(1): 39-48.

Change of Gas Hydrate Reservoir and Its Effect on the Environment in Xisha Trough since the Last Glacial Maximum

Funds:

the Innovation Program of the Chinese Academy of Sciences KZCX2-YW-211

the National Natural Science Foundation of China 40676043

the Foundation of Key Laboratory of Marginal Sea Geology, the South China Sea Institute of Oceanology, Chinese Academy of Sciences MSGL0509

the Start-up Foundation for Doctor Scientific Research of South China Sea Institute of Oceanology, Chinese Academy of Sciences 

More Information
  • Corresponding author: Yan Wen, wyan@scsio.ac.cn
  • Received Date: 26 Sep 2006
  • Accepted Date: 20 Dec 2006
  • In this article, Milkov and Sassen's model is selected to calculate the thickness of the gas hydrate stable zone (GHSZ) and the amount of gas hydrate in the Xisha (西沙) Trough at present and at the last glacial maximum (LGM), respectively, and the effects of the changes in the bottom water temperature and the sea level on these were also discussed. The average thickness of the GHSZ in Xisha Trough is estimated to be 287 m and 299 m based on the relationship between the GHSZ thickness and the water depth established in this study at present and at LGM, respectively. Then, by assuming that the distributed area of gas hydrates is 8 000 km2 and that the gas hydrate saturation is 1.2% of the sediment volume, the amounts of gas hydrate are estimated to be -2.76×1010 m3 and -2.87×1010 m3, and the volumes of hydrate-bound gases are -4.52×1012 m3 and -4.71×1012 m3 at present and at LGM, respectively. The above results show that the thickness of GHSZ decreases with the bottom water temperature increase and increases with the sea level increase, wherein the effect of the former is larger than that of the latter, that the average thickness of GHSZ in Xisha Trough had been reduced by -12 m, and that 1.9×1011 m3 of methane is released from approximately 1.1×109m3 of gas hydrate since LGM. The released methane should have greatly affected the environment.

     

  • loading
  • Bains, S., Corfield, R. M., Norris, R. D., 1999. Mechanisms of Climate Warming at the End of the Paleocene. Science, 285: 724-727 doi: 10.1126/science.285.5428.724
    Booth, J. S., Winters, W. J., Dillon, W. P., et al., 1998. Major Occurrences and Reservoir Concepts of Marine Clathrate Hydrates: Implications of Field Evidence. In: Henriet, J. P., Mienert, J., eds., Gas Hydrates: Relevance to World Mar-gin Stability and Climate Change. Geol. Soc. London Spec. Publ., 137: 113-128
    Brewer, P. G., 2000. Gas Hydrates and Global Climate Change. In: Holder, G. D., Bishnoi, P. R., eds., Gas Hydrates: Chal-lenges for the Future. Ann. N. Y. Acad. Sci., 912: 195-199
    Buffet, B. A., 2000. Lathrate Hydrates. Annual Review of Earth and Planetary Sciences, 28: 477-507 doi: 10.1146/annurev.earth.28.1.477
    Carpenter, G., 1981. Coincident Sediment Slump/Clathrate Com-plexes on the U. S. Atlantic Continental Slope. Geo Mar Lett, 1: 29-32 doi: 10.1007/BF02463298
    Cathles, L. M., Chen, D. F., 2004. A Compositional Kinetic Model of Hydrate Crystallization and Dissolution. J. Geo-phys. Res., 109: B08102
    Chamberlain, J. W., Foley, H. M., Macdonald, G. J., et al., 1983. Climate Effects of Minor Atmospheric Constituents. In: Clark, W. C., ed., Carbon Dioxide Review. Oxford Univ. Press, New York. 255-277
    Chen, D. F., Cathles, L. M., 2003. A Kinetic Model for the Pattern and Amounts of Hydrate Precipitated from a Gas Steam: Application to the Bush Hill Vent Site, Green Can-yon Block 185, Gulf Of Mexico. J. Geophys. Res., 108(B1): 2058
    Chen, D. F., Li, X. X., Xia, B., 2004. Distribution of Gas Hy-drate Stable Zones and Resource Prediction in the Qiong-dongnan Basin of the South China Sea. Chinese Journal of Geophysics, 47(3): 483-489 (in Chinese with English Ab-stract)
    Chen, L., Peng, X. C., Miu, W. C., 1995. Stratimagic Interpre-tation in Northern Slope of South China Sea. China Uni-versity of Geosciences Press, Wuhan. 92-106 (in Chinese with English Abstract)
    Chen, Z., Yan, W., Chen, M. H., et al., 2006. Advance in Gas Hydrate Dissociation and Fate of Methane in Marine Sediment. Advances in Earth Science, 21(4): 394-400 (in Chinese with English Abstract)
    Clennell, M. B., Hovland, M., Booth, J. S., et al., 1999. Forma-tion of Natural Gas Hydrates in Marine Sediments 1. Con-ceptual Model of Gas Hydrate Growth Conditioned by Host Sediment Properties. J. Geophys. Res., 104: 22985-23003 doi: 10.1029/1999JB900175
    Dickens, G. R., 2000. Methane Oxidation during the Late Pa-leocene Thermal Maximum. Bull. Soc. Geol. Fr., 171: 37-49
    Dickens, G. R., Castillo, M. M., Walker, J. C. G., 1997. A Blast of Gas in the Latest Paleocene: Simulating First-Order Ef-fect of Massive Dissociation of Oceanic Methane Hydrate. Geology, 25: 259-262
    Dickens, G. R., O'eil, J. R., Rea, D. K., et al., 1995. Dissocia-tion of Oceanic Methane Hydrate as a Cause of the Carbon Excursion at the End of the Paleocene. Paleoceanography, 10: 965-971 doi: 10.1029/95PA02087
    Dickens, G., 2001. On the Fate of Past Gas: What Happens to Methane Released Fro, a Bacterially Mediated Gas Hy-drate Capacitor? Geochemistry, Geophysics, Geosystems, 2: 5
    Fang, Y. X., Shentu, H. G., Jin, X. L., 2002. Computation of Thickness of Hydrate Stability Zone in Okinawa Trough. Mineral Deposits, 21(4): 414-418 (in Chinese with Eng-lish Abstract)
    Feng, W. K., Xue, W. J., Yang, D. Y., et al., 1988. Geo-environment of Northern South China Sea in Late Quaternary. Guangdong Science and Technology Press, Guangzhou. 42-43 (in Chinese with English Abstract)
    Gong, Z. S., Li, S. T., 1998. Continental Margin Basin Analysis and Hydrocarbon Accumulation in the Northern South China Sea. Science Press, Beijing. 510
    Hantoro, W. S., 1995. The Sunda and Sahul Continental Plat-form: Lost Land of the Last Glacial Continent in the SE Asia. Quat Inter'l, 29/30: 129-134 doi: 10.1016/1040-6182(95)00015-B
    Haq, B., 1998. Gas Hydrates: Greenhouse Nightmare? Energy Panacea, or Pipedream? GSA Today, 8: 1-6
    Hesselbo, S. P., Groecke, D. R., Jenkyns, H. C., et al., 2000. Massive Dissociation of Gas Hydrate during a Jurassic Oceanic Anoxic Event. Nature, 406: 392-395 doi: 10.1038/35019044
    Jacobsen, S. B., 2001. Gas Hydrates and Deglaciations. Nature, 412: 691-693 doi: 10.1038/35089168
    Jahren, A. H., Arens, N. C., Sarmiento, G., et al., 2001. Terres-tial Record of Methane Hydrate Dissociation in the Early Cretaceous. Geology, 29(2): 159-162 doi: 10.1130/0091-7613(2001)029<0159:TROMHD>2.0.CO;2
    Jeffrey, P., Atanas, V., Lyobomir, D., 2002. Changes of the Black Sea Gas Hydrate Reservoir from the Last Glacial Maximum to Present. Proceeding of the Fourth Interna-tional Conference on Gas Hydrates, Yokohama. 19-23
    Katz, M. E., Pak, D. K., Dickens, G. R., et al., 1999. The Source and Fate of Massive Carbon Input during the Lat-est Paleocene Thermal Maximum. Science, 286(5444): 1531-1533 doi: 10.1126/science.286.5444.1531
    Kennedy, M. J., Christie-Blick, N., Sohl, L. E., 2001. Are Pro-terozoic Cap Carbonates and Isotopic Excursions a Record of Gas Hydrate Destabilization Following Earth's Coldest Intervals? Geology, 29: 443-446
    Kennett, J. P., Cannariato, K. G., Hendy, I. L., et al., 2000. Carbon Isotopic Evidence for Methane Hydrate Instability during Quaternary Interstadials. Science, 288: 128-133 Kennett, J. P., Cannariato, K. G., Hendy, I. L., et al., 2003. doi: 10.1126/science.288.5463.128
    Methane Hydrates in Quaternary Climate Change. AGU, 1-217
    Kienast, M., Steinke, S., Stattegger, K., et al., 2001. Synchro-nous Tropical South China Sea SST Change and Greenland Warming during Deglaciation. Science, 291: 2132-2134 doi: 10.1126/science.1057131
    Koch, P. L., Zachos, J. C., Gingerich, P. D., 1992. Correlation between Isotope Records in Marine and Continental Car-bon Reservoirs near the Palaeocene/Eocene Boundary. Nature, 359: 319-322
    Kvenvolden, K. A., 1993. Gas Hydrates—Geological Perspec-tive and Global Change. Rev. Geophys. 31: 173-187 doi: 10.1029/93RG00268
    Kvenvolden, K. A., Barnard, L. A., 1983. Hydrates of Natural Gas in Continental Margins. In: Watkens, J. S., Drakem, C. L., eds., Studies in Continental Margin Geology. Am. Assoc. Pet. Geol. Mem., 34: 631-640
    Leifer, I. S., MacDonald, I., 2003. Dynamics of the Gas Flux from Shallow Gas Hydrate Deposits: Interaction between Oily Hydrate Bubbles and the Oceanic Environment. Earth and Planetary Science Letters, 210: 411-424 doi: 10.1016/S0012-821X(03)00173-0
    Lu, Z. Q., Wu, B. H., Zhu, Y. H., 2002. Preliminary Discussion on Origin and Formation of Potential Gas Hydrates in South China Sea. Mineral Deposits, 21(3): 232-239 (in Chinese with English Abstract)
    MacDonald, G. J., 1982. The Long-Term Impacts on Increasing Atmospheric Carbon Dioxide Levels. Ballinger, Cam-bridge
    MacDonald, G. J., 1990a. Role of Methane Clathrates in Past and Future Climates. Clim. Change, 16: 247-281 doi: 10.1007/BF00144504
    MacDonald, G. J., 1990b. The Future of Methane as an Energy Resource. Ann. Rev. Energy, 15: 53-83 doi: 10.1146/annurev.eg.15.110190.000413
    Maslin, M. A., Mikkelsen, N., Vilela, C., et al., 1998. Sea-Level and Gas-Hydrate-Controlled Catastrophic Sediment Fail-ures of the Amazon Fan. Geology, 26: 1107-1110
    Matsumoto, R., 1995. Causes of the δ13C Anomalies of Car-bonates and a New Paradigm 'Gas-Hydrate Hypotheses? J. Geol. Soc. Japan, 101: 902-924 doi: 10.5575/geosoc.101.902
    Milkov, A. V., 2004. Global Estimates of Hydrate-Bound Gas in Marine Sediments: How Much Is Really out there? Earth-Science Reviews, 66: 183-197 doi: 10.1016/j.earscirev.2003.11.002
    Milkov, A. V., Sassen, R., 2000. Thickness of the Gas Hydrate Stability Zone, Gulf of Mexico Continental Slope. Mar. Pet. Geol., 18: 981-991
    Milkov, A. V., Sassen, R., 2001. Estimate of Gas Hydrate Resource, Northwestern Gulf of Mexico Continental Slope. Marine Geology, 179: 71-83 doi: 10.1016/S0025-3227(01)00192-X
    Milkov, A. X., Sassen, R., 2003. Two-Dimensional Modeling of Gas Hydrate Decomposition in the Northwestern Gulf of Mexico: Significance to Global Change Assessment. Global and Planetary Change, 36: 31-46 doi: 10.1016/S0921-8181(02)00162-5
    Monnin, E., IndermÜHle, A., Dällenbach, A., et al., 2001. At-mospheric CO2 Concentrations over the Last Glacial Ter-mination. Science, 291: 112-114 doi: 10.1126/science.291.5501.112
    Nisbet, E. G., 1990. The End of the Ice Age. Canadian Journal of Earth Science, 27: 148-157 doi: 10.1139/e90-012
    Norris, R. D., Röhl, U., 1999. Carbon Cycling and Chronology of Climate Warming during the Palaeocene/Eocene Tran-sition. Nature, 401: 775-778 doi: 10.1038/44545
    Novosel, I., Spence, G. D., Hyndman, R. D., 2005. Reduced Magnetization Produced by Increased Methane Flux at a Gas Hydrate Vent. Marine Geology, 216(4): 265-274 doi: 10.1016/j.margeo.2005.02.027
    Padden, M., Weissert, H., De Rafelis, M., 2001. Evidence for Late Jurassic Release of Methane from Gas Hydrate. Ge-ology, 29(3): 223-226
    Petit, J. R., Jouzel, J., Raynaud, D., et al., 1999. Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antartica. Nature, 399: 429-436 doi: 10.1038/20859
    Retallack, G. J., 2001. A 300-Million-Year Record of Atmos-pheric Carbon Dioxide from Fossil Plant Cuticles. Nature, 411: 287-290 doi: 10.1038/35077041
    Riedel, M., Spence, G. D., Hyndman, R. D., et al., 2002. Seis-mic Investigations of an Apparent Active Vent Field Asso-ciated with Gas Hydrates Offshore Vancouver Island. J. Geophys. Res., 107 (B9): 1-16
    Satoh, M., Maekawa, T., Okuda, Y., 1996. Estimation of Amount of Methane and Resources of Natural Gas Hy-drates in the World and around Japan. J. Geol. Soc. Japan, 102: 959-971 doi: 10.5575/geosoc.102.959
    Severinghaus, J. P., Brook, E. J., 1999. Abrupt Climate Change at the End of the Last Glacial Period Inferred from Trapped Air in Polar Ice. Science, 286: 930-933 doi: 10.1126/science.286.5441.930
    Severinghaus, J. P., Sowers, T., Brook, E. J., et al., 1998. Tim-ing of Abrupt Climate Change at the End of the Younger Dryas Interval from Thermally Fractionated Gases in Po-lar Ice. Nature, 391: 141-146 doi: 10.1038/34346
    Sibuet, M., Olu, K., 1998. Biogeography, Biodiversity and Fluid Dependence of Deep-Sea Cold-Seep Communities at Active and Passive Margins. Deep-Sea Research Part II, 45: 517-567 doi: 10.1016/S0967-0645(97)00074-X
    Sloan, E. D., 1998. Clathrate Hydrates of Natural Gases. Marcel-Dekker, New York
    Song H B., 2003. Researches on Dynamic Evolution of Gas Hydrate System (I): Its Development in Geological His-tory. Progress in Geophysics, 18(2): 188-196 (in Chinese with English Abstract)
    Spanger, N. S., Hayes, D. E. 1995. Gravity, Heat Flow, and Seismic Constraints on the Processes of Crust Extension: Northern Margin of the South China Sea. Journal of Geo-physical Research, 100: 22447-22483 doi: 10.1029/95JB01868
    Summerhayes, C. P., Bornhold, B. D., Embley, R. W., 1979. Surficial Slides and Slumps on the Continental Slope and Rise of South West Africa: A Reconnaissance Study. Mar. Geol., 31: 265-277 doi: 10.1016/0025-3227(79)90037-9
    The Multidisciplinary Oceanographic Expedition Team of Academia Sinica to Nansha Islands. 1993. Quaternary Sedimentary Geology of Nansha Islands and Adjacent Sea Area. Hubei Science and Technology Press, Wuhan. 1-383 (in Chinese with English Abstract)
    Wang, H. Y., Sun, C. Y., Zhang, H. B., et al., 2005. Origin and Genetic Model of Potential Gas Hydrates in Xisha Trough, South China Sea. Marine Geology and Quaternary Geol-ogy, 25(4): 85-91 (in Chinese with English Abstract)
    Wang, P., Prell, W. L., Blum, P., et al., 2000. Proc ODP, Init Repts, 184 [CD-ROM]. Ocean Drilling Program, Texas A & M University, College Station TX 77845-9547, USA
    Xue, W. J., Huo, C. L., Si, G. X., 1991. The Paleoclimate and Paleoceanography of Late Quaternary in Northern South China Sea. Marine Geology Research, 4: 1-96 (in Chinese with English Abstract)
    Yang, T., Jiang, S. Y., Ge, L., et al., 2006. Geochemical Char-acteristics of Sediment Pore Water from Site XS-01 in the Xisha Trough of South China Sea and Their Significance for Gas Hydrate Occurrence. Quaternary Sciences, 26(3): 442-448 (in Chinese with English Abstract)
    Yao, B. C., 2001. The Gas Hydrate in the South China Sea. Journal of Tropical Oceanography, 20(2): 20-28 (in Chi-nese)
    Yao, B., Zeng, W., Hayes, D. E., et al., 1994. The Geological Memoir of South China Sea Surveyed Jointly by China & USA. China University of Geosciences Press, Wuhan. 1-102
    Zeng, W. P., Zhou, D., 2003. GIS-Aided Estimation of Gas Hydrate Resources in Southern South China Sea. Journal of Tropical Oceanography, 22(6): 35-45 (in Chinese with English Abstract)
    Zhu, Y. H., Rao, Z., Liu, J., et al., 2005. Geochemical Anoma-lies and Their Implication from Site 14, the Xisha Trough, the South China Sea. Geoscience, 19(1): 39-44 (in Chi-nese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(710) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return