Citation: | Shu-hai LIN, Li-ying ZHAO. High Precision Time Domain Forward Modeling for Crosshole Electromagnetic Tomography. Journal of Earth Science, 2007, 18(4): 320-325. |
To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.
Bourgeois, J. M., Smith, G. S., 1996. A Fully Three-Dimensional Simulation of Ground-Penetrating Radar: FDTD Theory Compared with Experiment. IEEE Trans. Geosci. Remote Sensing, 34: 36–44. doi: 10.1109/36.481890 |
Chen, H. W., 1996. Staggered-Grid Pseudo-spectral Acoustic Wave Field Simulation in Two-Dimensional Media. J. Acoust. Soc. Am. , 100: 120–131. doi: 10.1121/1.415947 |
Fornberg, B., 1997. The Pseudo-Spectral Method—Comparisons with Finite Difference for the Elastic Wave Equation. Geophysics, 52: 483–501. http://adsabs.harvard.edu/abs/1987Geop...52..483F |
Liu, Q. H., 1997. The PSTD Algorithm: A Time-Domain Method Requiring Only Two Cells Per Wavelength. Microwave Opt. Technol. Lett. , 15 (2): 158–165. doi: 10.1002/(sici)1098-2760(19970620)15:3%3C158::aid-mop11%3E3.0.co;2-3 |
Liu, Q. H., 1999. Large-Scale Simulations of Electromagnetic and Acoustic Measurements Using the Pseudospectral Time-Domain Algorithm. IEEE Transaction on Geoscience and Remote Sensing, 37 (2): 917–926. doi: 10.1109/36.752210 |
Sanada, Y., 2000. The Study of High Precision Modeling and Imaging of the Ground Penetration Radar (GPR): [Dissertation]. Kyoto University, Kyoto. |
Taflove, A., Hagness, S. C., 2000. Computational Electrodynamics: The Finite Difference Time Domain Method. 2nd Edition. Artech House, Boston. 67–107. |
Uno, T., 1998. Analysis of Electromagnetic Field and Antenna Using FDTD Method. Korona, Japan. |
Wang, T., Tripp, A. C., 1996. FDTD Simulation of EM Wave Propagation in 3-D Media. Geophysics, 61: 110–120. doi: 10.1190/1.1443930 |
Wilt, M., Alumbaugh, D., Morrison, H. F., et al., 1995. Crosswell Electromagnetic Tomography: System Design Consideration and Field Result. Geophysics, 60: 871–885. doi: 10.1190/1.1443823 |
Witte, D. C., Richards, P. G., 1990. The Pseudo-spectral Method for Simulating Wave Propagating. Computational Acoustics, 3: 1–18. |
Yokota, T., Matsushima, J., 2004. Seismic Waveform Tomography in the Frequency-Space Domain: Selection of the Optimal Temporal Frequency for Inversion. Exploration Geophysics, 35: 19–24. doi: 10.1071/EG04019 |
Zhou, C. G., Liu, L. B., Lane, J. W., 2001. Nonlinear Inversion of Borehole Radar Tomography Data to Reconstruct Velocity and Attenuation Distribution in Earth Materials. Journal of Applied Geophysics, 47: 271–284. doi: 10.1016/S0926-9851(01)00071-4 |