Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 19 Issue 5
Oct 2008
Turn off MathJax
Article Contents
Xiaoyan RUAN, Genming LUO, Shouzhi HU, Feng CHEN, Si SUN, Wenjun WU, Qiaozhen GUO, Guoquan LIU. Molecular Records of Primary Producers and Sedimentary Environmental Conditions of Late Permian Rocks in Northeast Sichuan, China. Journal of Earth Science, 2008, 19(5): 471-480.
Citation: Xiaoyan RUAN, Genming LUO, Shouzhi HU, Feng CHEN, Si SUN, Wenjun WU, Qiaozhen GUO, Guoquan LIU. Molecular Records of Primary Producers and Sedimentary Environmental Conditions of Late Permian Rocks in Northeast Sichuan, China. Journal of Earth Science, 2008, 19(5): 471-480.

Molecular Records of Primary Producers and Sedimentary Environmental Conditions of Late Permian Rocks in Northeast Sichuan, China

Funds:

the National Natural Science Foundation of China 40730209

the SINOPEC project G0800-06-ZS-319

More Information
  • Corresponding author: Ruan Xiaoyan, Email: ruan6231@163.com
  • Received Date: 20 May 2008
  • Accepted Date: 01 Jul 2008
  • A series of biomarkers were identified in the aliphatic and aromatic fractions of the extracts from Late Permian Dalong (大隆) and Wujiaping (吴家坪) formations in Shangsi (上寺) Section, Northeast Sichuan (四川), South China, on the basis of the analysis of gas chromatography-mass spectrometry (GC-MC). The dominance of lower-molecular-weight n-alkanes throughout the profile suggests the dominant contribution of algae and bacteria to the organics preserved in the marine section. Wujiaping Formation is characterized by the elevated contribution from algae as well as other photoautotrophs such as photosynthetic bacteria as shown by the molecular ratios of hopanes to steranes or tricyclic terpanes as well as the ratio of pristane (Pr) and phytane (Ph) to C17 and C18 n-alkanes. This is in accord with the data from the microscopic measurement on the calcareous algae. In contrast, Dalong Formation is featured by enhanced contribution from bacteria and probably terrestrial organics indicated by the enhanced C24 tetracyclic terpanes relative to tricyclic terpanes. The two formations also show a distinct discrimination in sedimentary environmental conditions including redox condition and salinity. The anoxic condition was only found in the middle of the Dalong Formation as shown by the ratios of Pr/Ph and dibenzothiophene to phenanthrene, consistent with the reported data of Mo and U. An enhanced salinity indicated by the homohopane index is observed at the shallow Wujiaping Formation. On the basis of the composition of primary productivity and the redox condition, Dalong Formation is proposed, herein, to be potential hydrocarbon source rocks in the study site. It is notable that the topmost end-Permian is characterized by a large perturbance in both the redox condition and salinity, with oxic conditions being frequently interrupted by short-term anoxia, likely showing a causal relationship with the episodic biotic crisis across the Permian-Triassic boundary.

     

  • loading
  • Azevedo, D. A., Aquino Neto, F. R., Simoneit, B. R. T., et al., 1992. Novel Series of Tricyclic Aromatic Terpanes Characterized in Tasmanian Tasmanite. Organic Geochemistry, 18: 9-16 doi: 10.1016/0146-6380(92)90138-N
    Barber, C. J., Grice, K., Bastow, T. P., et al., 2001. The Identification of Crocetane in Australian Crude Oils. Organic Geochemistry, 32: 943-947 doi: 10.1016/S0146-6380(01)00057-2
    Brooks, J. D., Gould, K., Smith, J. W., 1969. Isoprenoid Hydrocarbons in Coal and Petroleum. Nature, 222: 257- 259 doi: 10.1038/222257a0
    Brocks, J. J., Logan, G. A., Buick, R., et al., 1999. Archean Molecular Fossils and the Early Rise of Eukaryotes. Science, 285: 1033-1036 doi: 10.1126/science.285.5430.1033
    Brocks, J. J., Love, G. D., Summons, R. E., et al., 2005. Biomarker Evidence for Green and Purple Sulphur Bacteria in a Stratified Palaeoproterozoic Sea. Nature, 437: 866-870 doi: 10.1038/nature04068
    Connan, J., Bouroullec, J., Dessort, D., et al., 1986. The Microbial Input in Carbonate-Anhydrite Facics of a Sabkha Palaeoenvironment from Guatemala: A Molecular Approach. Organic Geochemistry, 10: 29-50 doi: 10.1016/0146-6380(86)90007-0
    Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Paleoenvironmental Conditions of Sedimentation. Nature, 272: 216-222 doi: 10.1038/272216a0
    Fu, G. M., Zhang, J. H., 1988. Geological Significance of Microspherules in Permo-Triassic Boundary Clay of Guangyuan, Sichuan. Professional Papers of Stratigraphy and Palaeontology, 20: 38-46
    Fu, J., Sheng, G., Peng, P., et al., 1986. Peculiarities of Salt Lake Sediments as Potential Source Rocks in China. Organic Geochemistry, 10: 119-126 doi: 10.1016/0146-6380(86)90015-X
    Gao, Z. G., Xu, D. Y., Zhang, Q. W., et al., 1987. Discovery and Study of Microspherules at the Permian-Triassic Boundary of the Shangsi Section, Guangyuan, Sichuan. Geological Review, 33(3): 203-211 (in Chinese with English Abstract)
    Greenwood, P. F., Summons, R. E., 2003. GC-MS Detection and Significance of Crocetane and Pentamethylicosane in Sediments and Crude Oils. Organic Geochemistry, 34: 1211-1222 doi: 10.1016/S0146-6380(03)00062-7
    Grice, K., Twitchett, R. J., Alexander, R., et al., 2005. A Potential Biomarker for the Permian-Triassic Ecological Crisis. Earth and Planetary Science Letters, 236: 315-321 doi: 10.1016/j.epsl.2005.05.008
    He, L., Luo, X., Liu, L. P., et al., 2008. A Discussion on Depositional Environment in Late Permian and Distribution of Reef-Bank in Sichuan Basin. Natural Gas Industry, 28(1): 28-32 (in Chinese with English Abstract)
    Hinrichs, K. U., Hayes, J. M., Sylva, S. P., et al., 1999. Methane-Consuming Archaebacteria in Marine Sediments. Nature, 398: 802-805 doi: 10.1038/19751
    Huang, X., Jiao, D., Lu, L., et al., 2007. The Fluctuating Environment Associated with the Episodic Biotic Crisis during the Permo/Triassic Transition: Evidence from Microbial Biomarkers in Changxing, Zhejiang Province. Science in China (Series D), 50(7): 1052-1059 doi: 10.1007/s11430-007-0024-x
    Hughes, W. B., Holba, A. G., Dzou, L. I. P., 1995. The Ratios of Dibenzothiphene to Phenanthrene and Pristane to Phytane as Indicators of Depositional Environment and Lithology of Petroleum Source Rocks. Geochimica et Cosmochimica Acta, 59: 3581-3598 doi: 10.1016/0016-7037(95)00225-O
    Johns, R. B., 1986. Biological Markers in the Sedimentary Record. Elsevier, New York
    Liang, D. G., Zhang, S. C., Zhang, B. M., et al., 2000. Understanding on Marine Oil Generation in China Based on Tarim Basin. Earth Science Frontiers, 7(4): 534-547 (in Chinese with English Abstract)
    Ma, Y. S., Cai, X. Y., 2006. Exploration Achievements and Prospects of the Permian-Triassic Natural Gas in Northeastern Sichuan Basin. Oil & Gas Geology, 27(6): 741-750 (in Chinese with English Abstract)
    Meyers, P. A., Takeuchi, N., 1981. Environmental Change in Saginaw Bay, Lake Huron, Recorded by Geolipid Contents of Sediments Deposited since 1800. Environmental Geology, 3: 257-266 doi: 10.1007/BF02473517
    Moldowan, J. M., Seifert, W. K., Gallegos, E. J., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. American Association of Petroleum Geologists Bulletin, 69: 1255-1268
    Olcott, A. N., Sessions, A. L., Corsetti, F. A., et al., 2005. Biomarker Evidence for Photosynthesis during Neoproterozoic Glaciation. Science, 310: 471-474 doi: 10.1126/science.1115769
    Ourisson, G., Albrecht, P., Rohmer, M., 1982. Predictive Microbial Biochemistry—From Molecular Fossils to Procaryotic Membranes. Trends in Biochemical Sciences, 7: 236-239 doi: 10.1016/0968-0004(82)90028-7
    Peng, Y. Q., Yin, H. F., 2002. The Global Changes and Bio-effects across the Paleozoic-Mesozoic Transition. Earth Science Frontiers, 9(3): 85-93 (in Chinese with English Abstract)
    Peters, K. E., Moldowan, J. M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Englewood Cliffs
    Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Cambridge University Press, Cambridge
    Philp, R. P., 1985. Fossil Fuel Biomarkers. Elsevier, New York
    Philp, R. P., Gilbert, T. D., 1986. Biomarker Distributions in Australian Oils Predominantly Derived from Terrigenous Source Material. Organic Geochemistry, 10: 73-84 doi: 10.1016/0146-6380(86)90010-0
    Qin, J. Z., 2005. The Source Rocks in China. Science Press, Beijing (in Chinese)
    Sabroto, E. A., Alexander, R., Kagi, R., 1991. 30-Norhopanes: Their Occurrence in Sediments and Crude Oils. Chemical Geology, 93: 179-192 doi: 10.1016/0009-2541(91)90071-X
    Sachs, J. P., Anderson, R. F., 2005. Increased Productivity in the Subantarctic Ocean during Heinrich Events. Nature, 434: 1118-1121 doi: 10.1038/nature03544
    Schouten, S., Hopmans, E. C., Pancost, R. D., et al., 2000. Widespread Occurrence of Structurally Diverse Tetraether Membrane Lipids: Evidence for the Ubiquitous Presence of Low-Temperature Relatives of Hyperthomophiles. Proceedings of the National Academy of Science, USA, 97: 14421-14426 doi: 10.1073/pnas.97.26.14421
    Schultz, D. M., Quinn, J. G., 1974. Measurement of Phytol in Estuarine Suspended Organic Matter. Marine Biology, 27: 143-146
    Simoneit, B. R. T., Schoell, M., Dias, R. F., et al., 1993. Unusual Carbon Isotope Compositions of Biomarker Hydrocarbons in a Permian Tasmanite. Geochimica et Cosmochimica Acta, 57: 4205-4211 doi: 10.1016/0016-7037(93)90316-O
    Summons, R. E., Jahnke, L. L., Hope, J. M., et al., 1999. 2-Methylhopanoids as Biomarkers for Cyanobacterial Oxygenic Photosynthesis. Nature, 400: 554-557 doi: 10.1038/23005
    Volkman, J. K., Allen, D. L., Stevenson, P. L., et al., 1986. Bacterial and Algal Hydrocarbons in Sediments from a Saline Antarctic Lake, Ace Lake. Organic Geochemistry, 10: 671-681 doi: 10.1016/S0146-6380(86)80003-1
    Wang, T. G., Li, M. L., Wang, C. J., et al., 2008. Organic Molecular Evidence in the Late Neoproterozoic Tillites for a Paleo-oceanic Environment during the Snowball Earth Era in the Yangtze Region, Southern China. Precambrian Research, 162: 317-326 doi: 10.1016/j.precamres.2007.09.009
    Wang, Y. G., Wen, Y. C., Hong, H. T., et al., 2006. Petroleum Geological Characteristics of Deep Water Deposits in Upper Permian-Lower Triassic Trough in Sichuan Basin and Adjacent Areas. Oil & Gas Geology, 27(5): 702-713 (in Chinese with English Abstract)
    Wang, Y. G., Hong, H. T., Xia, M. L., et al., 2008. Exploration of Reef-Bank Gas Reservoirs Surrounding Permian and Triassic Troughs in Sichuan Basin. Natural Gas Industry, 28(1): 22-27 (in Chinese with English Abstract)
    Xie, S. C., Pancost, R. D., Yin, H. F., et al., 2005. Two Episodes of Microbial Change Coupled with Permo/Triassic Faunal Mass Extinction. Nature, 434: 494-497 doi: 10.1038/nature03396
    Xie, S. C., Pancost, R. D., Huang, J. H., et al., 2007a. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian-Triassic Crisis. Geology, 35(12): 1083-1086 doi: 10.1130/G24224A.1
    Xie, S. C., Yin, H. F., Hu, C. Y., et al., 2007b. On the Geobiological Evaluation of Hydrocarbon Source Rocks. Frontiers of Earth Science in China, 1(4): 389-398 doi: 10.1007/s11707-007-0041-2
    Yan, J. X., Ma, Z. X., Xie, X. N., et al., 2008. Subdivision of Permian Fossil Communities and Habitat Types in Northeast Sichuan, South China. Journal of China University of Geosciences, 19(5): 441-450 doi: 10.1016/S1002-0705(08)60049-7
    Yin, H. F., Huang, S. J., Zhang, K. X., et al., 1989. Volcanism at the Permian-Triassic Boundary in South China and Its Effects on Mass Extinction. Acta Geologica Sinica, 63(2): 169-180 (in Chinese with English Abstract)
    Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth ScienceJournal of China University of Geosciences, 24(1): 1-12 (in Chinese with English Abstract)
    Zhang, C. L., Fouke, B. W., Bonheyo, G. T., et al., 2004. Lipid Biomarkers and Carbon-Isotopes of Modern Travertine Deposits (Yellowstone National Park, USA): Implications for Biogeochemical Dynamics in Hot-Spring Systems. Geochimica et Cosmochimica Acta, 68: 3157-3169 doi: 10.1016/j.gca.2004.03.005
    Zhang, S. C., Huang, H. P., 2005. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China: Part 1. Oil Family Classification. Organic Geochemistry, 36: 1204-1214
    Zhang, S. C., Zhang, B. M., Bian, L. Z., et al., 2005. Development Constraints of Marine Source Rocks in China. Earth Science Frontiers, 12(3): 39-48 (in Chinese with English Abstract)
    Zhou, L., Zhang, H. Q., Wang, J., et al., 2008. Assessment on Redox Conditions and Organic Burial of Siliciferous Sediments at the Latest Permian Dalong Formation in Shangsi, Sichuan, South China. Journal of China University of Geosciences, 19(5): 496-506 doi: 10.1016/S1002-0705(08)60055-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(789) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return