Citation: | Lian Zhou, Haiqiang Zhang, Jin Wang, Junhua Huang, Xinong Xie. Assessment on Redox Conditions and Organic Burial of Siliciferous Sediments at the Latest Permian Dalong Formation in Shangsi, Sichuan, South China. Journal of Earth Science, 2008, 19(5): 496-506. |
The redox sensitive elements, molybdenum (Mo) and uranium (U), in marine sediments from the latest Permian Dalong (大隆) Formation at the Shangsi (上寺) Section, Northeast Sichuan (四川), South China, were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine their response to a range of redox conditions, and to estimate the organic carbon burial rate. On the basis of the correlation between authigenic Mo abundance and organic carbon content in modern oceans, the organic carbon burial rates were calculated for the rocks at Dalong Formation, ranging from 0.48–125.83 mmol/(m2·d), which shows a larger range than the mineralization rate of organic carbon at the continental margins (1.6–4.23 mmol/(m2·d)). The Zr-normalized Mo and U abundances show large fluctuations in the entire section. The maxima of Zr-normalized Mo abundance and thus the maxima of the organic carbon burial rates were observed at the interval between the 155th and 156th beds (404–407 m above the base of Middle Permian). A decrease (the minimum) in U/Mo ratios is present in this interval. It is speculated that the oxygen-limited conditions and ultimately anoxia or euxinia may develop within this depth interval. In contrast, an enhanced enrichment of Zr-normalized U abundance is found, in association with less enrichment in Zr-normalized Mo abundance in the interval from the 151st to 154th beds (395–404 m above the base of Middle Permian), inferring the dominance of a suboxic/anoxic depositional condition (denitrifying condition), or without free H2S. The presence of small quantities of dissolved oxygen may have caused the solubilization and loss of Mo from sediments. It is proposed that the multiple cycles of abrupt oxidation and reduction due to the upwelling at this interval lead to the enhanced accumulation of authigenic U, but less enrichment of Mo. A decrease in the contents of U, Mo, and TOC is found above the 157th bed (407 m above the base of Middle Permian), in association with the enhanced U/Mo ratio, suggesting the overall oxic conditions at the end of the Dalong Formation.
Adelson, J. M., Helz, G. R., Miller, C. V., 2001. Reconstructing the Rise of Recent Coastal Anoxia: Molybdenum in Chesapeake Bay Sediments. Geochimica et Cosmochimica Acta, 65: 237–252 doi: 10.1016/S0016-7037(00)00539-1 |
Algeo, T. J., Lyons, T. W., 2006. Mo-TOC Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Hydrographic Conditions. Paleoceanography, 21: PA1016. Doi: 10.1029/2004PA001112 |
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206: 289–318 doi: 10.1016/j.chemgeo.2003.12.009 |
Anderson, R. F., Fleisher, M. Q., Lehuray, A. P., et al., 1989. Uranium Deposition in Saanich Inlet Sediments, Vancouver Island. Geochimica et Cosmochimica Acta, 53: 2205–2213 doi: 10.1016/0016-7037(89)90344-X |
Arnold, G. L., Anbar, A. D., Barling, J., et al., 2004. Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans. Science, 304: 87-90 doi: 10.1126/science.1091785 |
Berrang, P. G., Grill, E. V., 1974. The Effect of Manganese Oxides Scavenging on Molybdenum in Saanich Inlet. B.C. . Mar. Chem. , 2: 125-148 doi: 10.1016/0304-4203(74)90033-4 |
Bertine, K. K., Turekian, K. K., 1973. Molybdenum in Marine Deposits. Geochimica et Cosmochimica Acta, 37: 1415-1434 doi: 10.1016/0016-7037(73)90080-X |
Bralower, T. J., Thierstein, H. R., 1984. Low Productivity and Slow Deep-Water Circulation in Mid-Cretaceous Oceans. Geology, 12: 614-618 doi: 10.1130/0091-7613(1984)12<614:LPASDC>2.0.CO;2 |
Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichment in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth Planet. Sci. Lett., 145: 65-78 doi: 10.1016/S0012-821X(96)00204-X |
Dean, W. E., Gardner, J. V., Piper, D. Z., 1997. Inorganic Geochemical Indicators of Glacial-Interglacial Changes in Productivity and Anoxia on the California Continental Margin. Geochimica et Cosmochimica Acta, 61: 4507-4518 doi: 10.1016/S0016-7037(97)00237-8 |
Emerson, S. R., Huested, S. S., 1991. Ocean Anoxia and the Concentrations of Molybdenum and Vanadium in Seawater. Mar. Chem., 34(3-4): 177-196 doi: 10.1016/0304-4203(91)90002-E |
Erickson, B. E., Helz, G. R., 2000. Molybdenum (Ⅵ) Speciation in Sulfidic Waters: Stability and Lability of Thiomolybdenites. Geochimica et Cosmochimica Acta, 64: 1149-1158 doi: 10.1016/S0016-7037(99)00423-8 |
Helz, G. R., Miller, C. V., Charnock, J. M., et al., 1996. Mechanism of Molybdenum Removal from the Sea and Its Concentration in Black Shales: EXAFS Evidence. Geochimica et Cosmochimica Acta, 60: 3631-3642 doi: 10.1016/0016-7037(96)00195-0 |
Herbert, T. D., Stallard, R. F., Fischer, A. G., 1986. Anoxic Events, Productivity Rhythms and the Orbital Signature in a Mid-Cretaceous Deep-Sea Sequence from Central Italy. Paleoceanography, 1: 495-506 doi: 10.1029/PA001i004p00495 |
Isla, E., Masque, P., Palanques, A., et al., 2002. Sediment Accumulation Rates and Carbon Burial in the Bottom Sediment in a Hugh Productivity Area: Gerlache Strait (Antarctica). Deep-Sea Research, 49: 3275-3287 |
Ji, Z. S., Yao, J. X., Yukio, I., et al., 2007. Conodont Biostratigraphy across the Permian-Triassic Boundary at Chaotian, in Northern Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252: 39-55 doi: 10.1016/j.palaeo.2006.11.033 |
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Paleoredox Conditions in Ancient Mudstones. Chemical Geology, 114: 111-129 |
Lyons, T. W., Werne, J. P., Hollander, D. J., et al., 2003. Contrasting Sulfur Geochemistry and Fe/Al and Mo/Al Ratios across the Last Oxic-to-Anoxic Transition in the Cariaco Basin, Venezuela. Chemical Geology, 195: 131-157 doi: 10.1016/S0009-2541(02)00392-3 |
McManus, J., Berelson, W. M., Severmann, S., et al., 2006. Molybdenum and Uranium Geochemistry in Continental Margin Sediments: Paleoproxy Potential. Geochimica et Cosmochimica Acta, 70: 4643-4662 doi: 10.1016/j.gca.2006.06.1564 |
McManus, J., Berelson, W. M., Klinkhammer, G. P., et al., 2005. Authigenic Uranium: Relationship to Oxygen Penetration Depth and Organic Carbon Rain. Geochimica et Cosmochimica Acta, 69: 95-108 doi: 10.1016/j.gca.2004.06.023 |
Milnes, A. R., Fitzpatrick, R. W., 1989. Titanium and Zirconium Minerals. In: Dixon, J. B., Weed, S. B., eds., Minerals in Soil Environments, Vol. 23. Soil Sci. Soc. Am., Madison, Wisc. . 1131-1205 |
Mo, T., Suttle, A. D., Sackett, W. M., 1973. Uranium Concentrations in Marine Sediments. Geochimica et Cosmochimica Acta, 37: 35-51 doi: 10.1016/0016-7037(73)90242-1 |
Morford, J. L., Emerson, S. R., 1999. The Geochemistry of Redoxsensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63: 1735-1750 doi: 10.1016/S0016-7037(99)00126-X |
Morse, J. W., Luther, G. W. III, 1999. Chemical Influences on Trace Metal-Sulfide Interactions in Anoxic Sediments. Geochimica et Cosmochimica Acta, 63: 3373-3378 doi: 10.1016/S0016-7037(99)00258-6 |
Mussi, A., Sundby, B., Gehlen, M., et al., 2000. The Fate of Carbon in Continental Shelf Sediments of Eastern Canada: A Case Study. Deep-Sea Research Ⅱ, 47: 733-760 |
Nameroff, T., 1996. The Geochemistry of Redox-Sensitive Metals in Sediments of the Oxygen Minimum off Mexico: [Dissertation]. University of Washington, Seattle |
Suess, E., 1980. Particulate Organic Carbon Flux in the Oceans-Surface Productivity and Oxygen Utilization. Nature, 288: 260-263 doi: 10.1038/288260a0 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Malden |
Tribovillard, N., Riboulleau, A., Lyons, T., et al., 2004. Enhanced Trapping of Molybdenum by Sulfurized Organic Matter of Marine Origin as Recorded by Various Mesozoic Formations. Chemical Geology, 213: 385-401 doi: 10.1016/j.chemgeo.2004.08.011 |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12-32 doi: 10.1016/j.chemgeo.2006.02.012 |
Vetö, I., Demény, A., Hertelendi, E., et al., 1997. Estimation of Primary Productivity in the Toarcian Tethys—A Novel Approach Based on TOC, Reduced Sulphur and Manganese Contents. Palaeogeography, Palaeoclimatology, Palaeoecology, 132: 355-371 doi: 10.1016/S0031-0182(97)00053-9 |
Vetö, I., Ozsvárt, P., Futó, I., et al., 2007. Extension of Carbon Flux Estimation to Oxic Sediments Based on Sulphur Geochemistry and Analysis of Benthic Foraminiferal Assemblages: A Case History from the Eocene of Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 248: 119-144 doi: 10.1016/j.palaeo.2006.12.001 |
Wedepohl, K. H., 1971. Environmental Influences on the Chemical Composition of Shales and Clays. In: Ahrens, L. H., Press, F., Runcorn, S. K., et al., eds., Physics and Chemistry of the Earth. Pergamon, Oxford. 305-333 |
Xie, S. C., Pancost, R. D., Huang, J. H., et al., 2007. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian-Triassic Crisis. Geology, 35(12): 1083-1086 doi: 10.1130/G24224A.1 |
Xie, S. C., Pancost, R. D., Yin, H. F., et al., 2005. Two Episodes of Microbial Change Coupled with Permo/Triassic Faunal Mass Extinction. Nature, 434: 494-497 doi: 10.1038/nature03396 |
Xie, X. N., Li, H. J., Xiong, X., et al., 2008. Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan. Journal of China University of Geosciences, 19(5): 507-517 doi: 10.1016/S1002-0705(08)60056-4 |
Yang, Z. Y., Yin, H. F., Wu, S. B., et al., 1987. Permian-Triassic Boundary Stratigraphy and Fauna of South China. Geological Memoirs, Series, 2, 6. Geological Publishing House, Beijing. 1-380 (in Chinese with English Abstract) |
Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24: 102-114 doi: 10.18814/epiiugs/2001/v24i2/004 |
Zhang, J. H., Dai, J. Y., Tian, S. G., 1984. Biostratigraphy of Late Permian and Early Triassic Conodonts in Shangsi, Guangyuan County, Sichuan, China. Scientific Papers on Geology for the 27th International Geological Congress, Vol. 1. Geological Publishing House, Beijing. 163-178 (in Chinese with English Abstract) |
Zheng, Y., Anderson, R. F., van Geen, A., et al., 2002. Preservation of Particulate Non-lithogenic Uranium in Marine Sediments. Geochimica et Cosmochimica Acta, 66: 3085-3092 doi: 10.1016/S0016-7037(01)00632-9 |
Zheng, Y., Anderson, R. F., van Geen, A., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64: 4165-4178 doi: 10.1016/S0016-7037(00)00495-6 |
Zhou, L., Huang, J. H., Archer, C., et al., 2007. Molybdenum Isotope Signatures from Yangtze Block Continental Margin and Its Significance to Organic Carbon Burial Rate. Frontiers of Earth Science in China, 1(4): 417-424 doi: 10.1007/s11707-007-0051-0 |
Zhu, T. X., Huang, Z. Y., Hui, L., 1999. The Geology of Late Permian Period Biohermal Facies in Upper Yangtze Tableland. Geological Publishing House, Beijing. 1-110 (in Chinese with English Abstract) |