Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 19 Issue 5
Oct 2008
Turn off MathJax
Article Contents
Xinong Xie, Hongjing Li, Xiang Xiong, Junhua Huang, Jiaxin Yan, Jianzhong Qin, Tenger, Wu Li. Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan. Journal of Earth Science, 2008, 19(5): 507-517.
Citation: Xinong Xie, Hongjing Li, Xiang Xiong, Junhua Huang, Jiaxin Yan, Jianzhong Qin, Tenger, Wu Li. Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan. Journal of Earth Science, 2008, 19(5): 507-517.

Main Controlling Factors of Organic Matter Richness in a Permian Section of Guangyuan, Northeast Sichuan

Funds:

the SINOPEC project G0800-06-ZS-319

More Information
  • Corresponding author: Xie Xinong, xnxie@cug.edu.cn
  • Received Date: 20 May 2008
  • Accepted Date: 02 Jul 2008
  • A complete Permian section in Guangyuan (广元), Northeast Sichuan (四川), has been investigated, to explore the variation in organic matter richness and its main controlling factors. The research results of the detailed lithological description and organic/inorganic geochemical analysis of about 325 samples indicate that a high content of total organic carbon (TOC) occurs in calcareous mudstones and laminated marls or thin-bedded limestones. In carbonate rocks, the TOC content is negatively related to the thickness of the massive beds; the thinner the bed is, the higher the TOC content is. Marine organic matter is enriched in the outer shelf and relatively shallow basin floor environments with the maximum TOC contents of 5.07% and 14.6%, respectively. The main factors that affect the quantity and quality of marine organic matter include primary productivity, depositional processes, and redox conditions during deposition and the early diagenesis stage. Three intervals of marine good quality source rocks are identified in this section; they are lower Chihsia Formation, topmost Maokou (茅口) Formation, and the middle segment of the Dalong (大隆) Formation. They are formed in anoxic environments, in association with high primary productivity. Among these, high productivity in the lower Chihsia interval may originate from an upwelling flow area, whereas, in the rest of the intervals, it is inferred to be related to hot fluid activity due to volcanic eruption. The results of this study suggest that good quality marine source rocks in the Permian strata offer significant hydrocarbon potential.

     

  • loading
  • Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206: 289-318 doi: 10.1016/j.chemgeo.2003.12.009
    Cai, L. G., Rao, D., Pan, W. L., et al., 2005. The Evolution Model of the Puguang Gas Field in Northeast Sichuan. Petroleum Geology and Experiment, 27(5): 462-467 (in Chinese with English Abstract)
    Cai, X. F., Zhang, Z. F., Peng, X. F., et al., 2007. Depositional Characteristics of the Dalong Formation and the Related Potential Hydrocarbon Source Rocks of Hubei, Hunan, Guizhou and Guangxi Regions. Earth Science—Journal of China University of Geosciences, 32(6): 774-780 (in Chinese with English Abstract)
    Cai, X. Y., Wei, B. D., Zhao, P. R., 2005. Characteristics of the Marine Hydrocarbon Source Rocks in South China. Natural Gas Industry, 25(3): 20-22 (in Chinese with English Abstract)
    Chen, J. F., Zhang, S. C., Sun, S. L., et al., 2006. Main Factors Influencing Marine Carbonate Source Rock Formation. Acta Geologica Sinica, 80(3): 467-472 (in Chinese with English Abstract)
    Chen, X. Q., Liu, Y. K., Tong, P., 1987. Query about Dongwu Movement and New Opinion on Chuanqian Movement. Oil & Gas Geology, 8(4): 1-13 (in Chinese with English Abstract)
    Clavert, S. E., 1987. Oceanographic Controls on the Accumulation of Organic Matter in Marine Sediments. In: Brook, J., Fleet, A. J., eds., Marine Petroleum Source Rocks. Blackwell Scientific, London. 137-151
    Dai, J. X., Zou, C. N., Tao, S. Z., et al., 2007. Formation Conditions and Main Controlling Factors of Large Gas Fields in China. Natural Gas Geoscience, 18(4): 473-484 (in Chinese with English Abstract)
    Desbruyeres, D., Almeida, A., Biscoito, M., et al., 2000. A Review of the Distribution of Hydrothermal Vent Communities along the Northern Mid-Atlantic Ridge: Dispersal vs. Environmental Controls. Hydrobiologia, 440: 201-216 doi: 10.1023/A:1004175211848
    de la Lanza-Espino, G., Soto, L. A., 1999. Sedimentary Geochemistry of Hydrothermal Vents in Guaymas Basin, Gulf of California, Mexico. Applied Geochemistry, 14: 499-510 doi: 10.1016/S0883-2927(98)00064-X
    Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2: 9-31 doi: 10.1016/0146-6380(80)90017-0
    Henderson, G. M., 2002. New Oceanic Proxies for Paleoclimate. Earth and Planetary Science Letters, 203: 1-13 doi: 10.1016/S0012-821X(02)00809-9
    Hu, C. Y., Pan, H. X., Ma, Z. W., et al., 2007. Iron Abundance in the Marine Carbonate as a Proxy of the Paleo-productivity in Hydrocarbon Source Rocks. Earth Science—Journal of China University of Geosciences, 32(6): 755-758 (in Chinese with English Abstract)
    Huang, D. R., Cai, Z. X., Zhu, Y. M., 2007. The Sedimentary Setting and the Source Rock of Longtan (Wujiaping) Strata in the Northeastern Sichuan Basin. Offshore Oil, 27(3): 57-63 (in Chinese with English Abstract)
    Huc, A. Y., Bertrand, P., Stow, D. A. V., et al., 2001. Organic Sedimentation in Deep Offshore Settings: The Quaternary Sediments Approach. Marine and Petroleum Geology, 18: 513-517 doi: 10.1016/S0264-8172(00)00069-6
    Hunt, J. M., 1996. Petroleum Geochemistry and Geology. Freeman and Company, San Francisco. 524
    Jones, B. J., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for Interpretation of Paleoredox Conditions in Ancient Mudstones. Chemical Geology, 111: 111-129 doi: 10.1016/0009-2541(94)90085-X
    Ma, Y. S., 2008. Geochemical Characteristics and Origin of Natural Gases from Puguang Gas Field on Eastern Sichuan Basin. Natural Gas Geoscience, 19(1): 1-6 (in Chinese with English Abstract)
    Ma, Y. S., Cai, X., 2006. Exploration Achievements and Prospects of the Permian-Triassic Natural Gas in Northeastern Sichuan Basin. Oil & Gas Geology, 27(6): 741-750 (in Chinese with English Abstract)
    Ma, Y. S., Guo, X. S., Guo, T. L., 2005. Discovery of the Large-Scale Puguang Gas Field in the Sichuan Basin and Its Enlightenment for Hydrocarbon Prospecting. Geological Review, 51(4): 478-480 (in Chinese with English Abstract)
    Ma, Z. X., Yan, J. X., Xie, X. N., et al., 2008. Depositional and Ecological Features of Permian Oxygen Deficient Deposits at Shangsi Section, Northeast Sichuan, China. Journal of China University of Geosciences, 19(5): 488-495 doi: 10.1016/S1002-0705(08)60054-0
    Pailler, D., Bard, E., Rostek, F., et al., 2002. Burial of Redox-Sensitive Metals and Organic Matter in the Equatorial Indian Ocean Linked to Precession. Geochimica et Cosmochimica Acta, 66(5): 849-865 doi: 10.1016/S0016-7037(01)00817-1
    Pedersen, T. F., Calvert, S. E., 1990. Anoxia vs. Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rock? AAPG Bulletin, 74: 454-466
    Qin, J. X., Zeng, Y. F., Chen, H. D., et al., 1998. Permian Sequence Stratigraphy and Sea-Level Changes in Southwestern China. Sedimentary Facies and Palaeogeography, 18(1): 19-35 (in Chinese with English Abstract)
    Summit, M., Baross, J. A., 2001. A Novel Microbial Habitat in the Midocean Ridge Subseafloor. Proceedings of the National Academy of Sciences of the United States of America, 98(5): 2158-2163 doi: 10.1073/pnas.051516098
    Tyson, R. V., Pearson, T. H., 1991. Modern and Ancient Continental Shelf Anoxia. Geological Society of Special Publication, 58: 1-24 doi: 10.1144/GSL.SP.1991.058.01.01
    Wang, K., Orth, C. J., Attrep, M. Jr., et al., 1993. The Great Latest Ordovician Extinction on the South China Plate: Chemostratigraphic Studies of the Ordovician-Silurian Boundary Interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 104: 61-79 doi: 10.1016/0031-0182(93)90120-8
    Wang, C. S., Li, X. H., Chen, H. D., et al., 1999. Permian Sea-Level Changes and Rising-Falling Events in South China. Acta Sedimentologica Sinica, 17(4): 536-541 (in Chinese with English Abstract)
    Xu, S. H., Watney, W. L., 2007. Dominant Factors in Controlling Marine Gas Pools in South China. Frontiers of Earth Science in China, 1(4): 491-497 doi: 10.1007/s11707-007-0060-z
    Yamanaka, T., Ishibashi, J., Hashimoto, J., 2000. Organic Geochemistry of Hydrothermal Petroleum Generated in the Submarine Wakamiko Caldera, Southern Kyushu, Japan. Organic Geochemistry, 31: 1117-1132 doi: 10.1016/S0146-6380(00)00119-4
    Yan, J. X., Liu X. Y., 2007. Geobiological Interpretation of the Oxygen-Deficient Deposits of the Middle Permian Marine Source Rocks in South China: A Working Hypothesis. Frontiers of Earth Science in China, 1(4): 431-437 doi: 10.1007/s11707-007-0053-y
    Zhou, L., Huang, J. H., Archer, C., et al., 2007. Molybdenum Isotope Signatures from Yangtze Block Continental Margin and Its Indication to Organic Burial Rate. Frontiers of Earth Science in China, 1(4): 417-424 doi: 10.1007/s11707-007-0051-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(944) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return