Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 19 Issue 5
Oct 2008
Turn off MathJax
Article Contents
Deng Liu, Xiaofen Yang, Hongmei Wang, Jihong Li, Nian Su. Impact of Montmorillonite and Calcite on Release and Adsorption of Cyanobacterial Fatty Acids at Ambient Temperature. Journal of Earth Science, 2008, 19(5): 526-533.
Citation: Deng Liu, Xiaofen Yang, Hongmei Wang, Jihong Li, Nian Su. Impact of Montmorillonite and Calcite on Release and Adsorption of Cyanobacterial Fatty Acids at Ambient Temperature. Journal of Earth Science, 2008, 19(5): 526-533.

Impact of Montmorillonite and Calcite on Release and Adsorption of Cyanobacterial Fatty Acids at Ambient Temperature

Funds:

the SINOPEC project G0800-06-ZS-319

the National Natural Science Foundation of China 40672081

the National Natural Science Foundation of China 40730209

National Basic Research Program of China 2007CB815601

More Information
  • Corresponding author: Wang Hongmei, hmwang@cug.edu.cn
  • Received Date: 20 May 2008
  • Accepted Date: 01 Jul 2008
  • Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded during the sinking process, at ambient temperature, it is important to investigate the adsorption capacity of different minerals during this process, to assess the organic loss from primary productivity to sedimentary organic matter. In this study, montmorillonite and calcite have been selected to study the impact of different minerals on the release, adsorption, and deposition of cyanobacterial (Synechococcus elonpata) fatty acids (FAs) at ambient temperature. Gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) have been utilized to detect the variation in fatty acids. Primary results suggest that minerals have a different impact on dissolved organic matter. Montmorillonite can specifically enhance the release of fatty acids from cyanobacterial cells by lowering the pH values of the solution. The adsorption of the dissolved organic matter by montmorillonite will also be enhanced under a lower pH value. Conjunction of fatty acids with montmorillonite to form a complex will favor the sinking and preservation of these organics. Selective adsorption is observed among fatty acids with different carbon numbers. In contrast, calcite does not show any impact on the release and adsorption of organic matter even though it is reportedly capable of acting as a catalyst during the transformation of organic matter at high temperature. The primary data bridge a link between primary productivity and sedimentary organic matter, suggesting the relative importance of claystones in the formation of hydrocarbon source rocks in the earth's history.

     

  • loading
  • Berges, J. A., Franklin, D. J., Harrison, P. J., 2001. Evolution of an Artificial Seawater Medium: Improvements in Enriched Seawater, Artificial Water over the Last Two Decades. Journal of Phycology, 37(6): 1138-1145 doi: 10.1046/j.1529-8817.2001.01052.x
    Bligh, E. G., Dyer, W. J., 1959. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. , 37: 911-917 doi: 10.1139/y59-099
    Bock, M. J., Mayer, L. M., 2000. Mesodensity Organo-Clay Associations in a Near Shore Sediment. Marine Geology, 163: 65-75 doi: 10.1016/S0025-3227(99)00105-X
    Buesseler, K. O., Bauer, J. E., Chen, R. F., et al., 1996. An Intercomparison of Cross-Flow Filtration Techniques Used for Sampling Marine Colloids: Overiew and Organic Carbon Results. Marine Chemistry, 55: 1-31 doi: 10.1016/S0304-4203(96)00046-1
    Bull, I. D., van Bergen, P. F., Nott, C. J., et al., 2000. Organic Geochemical Studies of Soils from the Rothamsted Classical Experiments—V. The Fate of Lipids in Different Long-Term Experiments. Organic Geochemistry, 31: 389-408
    Connan, J., 1974. Time-Temperature Relation in Oil Genesis. AAPG Bulletin, 58: 2516-2521
    Cole, T. G., Shaw, H. F., 1983. The Nature and Origin of Authigenic Smectites in Some Recent Marine Sediments. Clay Mineral, 18: 239-252 doi: 10.1180/claymin.1983.018.3.02
    Dai, M. H., Benitez-Nelson, C. R., 2001. Colloidal Organic Carbon and 234Th in the Gulf of Marine. Marine Chemistry, 74: 181-196 doi: 10.1016/S0304-4203(01)00012-3
    Espitalie, J., Madec, M., Tissot, B., 1980. Role of Mineral Matrix in Kerogen Pyrolysis, Influence on Petroleum Generation and Migration. AAPG Bulletin, 64: 59-66
    Goldberg, E. D., Baker, M., Fox, D. L., 1952. Microfiltration in Oceanographic Research, 1. Marine Sampling with the Molecular Filter. Journal of Marine Research, 11: 194-205
    Hetényi, M., 1995. Simulated Thermal Maturation of Type Ⅰ and Ⅲ Kerogens in the Presence, and Absence, of Calcite and Montmorillonite. Organic Geochemistry, 23(2): 121-127 doi: 10.1016/0146-6380(94)00120-P
    Huang, D. P., Li, J. C., 1982. Formation of Terrestrial Petroleum in China. Petroleum Industry Press, Beijing (in Chinese)
    Jurg, J. W., Eisma, E., 1964. Petroleum Hydrocarbons: Generation from Fatty Acid. Science, 114(3625): 1451
    Jozefaciuk, G., Bowanko, G., 2002. Effect of Acid and Alkali Treatments on Surface Areas and Adsorption Energies of Selected Minerals. Clays and Clay Minerals, 50(6): 771-783 doi: 10.1346/000986002762090308
    Kennedy, M. J., Pevear, D. R., Hill, R. H., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295: 657-660 doi: 10.1126/science.1066611
    Lee, J. F., Mortland, M. M., Chiou, C. T., et al., 1990. Adsorption of Benzene, Toluene, and Xylene by Two Tetramethylammonium-Smectites Having Different Charge Densities. Clays and Clay Minerals, 38(2): 113-120 doi: 10.1346/CCMN.1990.0380201
    Lu, L. F., Cai, J. G., Bao, Y. J., et al., 2006. Summary of Processes and Significance of Clay Minerals in Marine Sedimentary Organic Matter Preservation and in Global Carbon Cycle. Advances in Earth Science, 21(9): 931-937 (in Chinese with English Abstract)
    Mayer, L. M., 1994. Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments. Geochimica et Cosmochimica Acta, 58: 1271-1284 doi: 10.1016/0016-7037(94)90381-6
    Mayer, L. M., 1999. Extent of Coverage of Mineral Surfaces by Organic Matter in Marine Sediment. Geochimica et Cosmochimica Acta, 63: 207-215 doi: 10.1016/S0016-7037(99)00028-9
    Meshri, I. D, 1986. On the Reactivity of Carbonic and Organic Acid and Generation of Secondary Porosity. In: Gautier, D. L., ed., Roles of Organic Matter in Sediment Diagenesis. SEPM Specical Publication, 38: 124-128
    Mizutani, T., Takano, T., Ogoshi, H., 1995. Selectivity of Adsorption of Organic Ammonium Ions onto Smectite Clays. Langmuir, 11(3): 880-884 doi: 10.1021/la00003a033
    Otsuki, A., Hanya, T., 1972. Production of Dissolved Organic Matter from Dead Green Algal Cells. I. Aerobic Micronial Decomposition. Limnology and Oceanography, 17(2): 248-257 doi: 10.4319/lo.1972.17.2.0248
    Price, L. C., 1983. Geologic Time as a Parameter in Organic Metamorphism and Vitrinite Reflectance as an Absolute Paleogeothermometer. Journal of Petroleum Geology, 6(1): 5-38 doi: 10.1111/j.1747-5457.1983.tb00260.x
    Ransom, B., Dongseon, K., Kastner, M., et al., 1998. Organic Matter Preservation on Continental Slopes: Importance of Mineralogy and Surface Area. Geochimica et Cosmochimica Acta, 62: 1329-1345 doi: 10.1016/S0016-7037(98)00050-7
    Ruehrwein, R. A., Ward, D. W., 1952. Mechanism of Clay Aggregation by Polyelectrolytes. Soil Science, 73: 485-492 doi: 10.1097/00010694-195206000-00007
    Satterberg, J., Arnarinn, T. S., Lessard, E. J., et al., 2003. Sorption of Organic Matter from Four Phytoplankton Species to Montmorillonite, Chlorite and Kaolinite in Seawater. Marine Chemistry, 81: 11-18 doi: 10.1016/S0304-4203(02)00136-6
    Schnitzer, M., Schuppli, P., 1989. Method for the Sequential Extraction of Organic Matter from Soils and Soil Fractions. Soil Science Society of America Journal, 53: 1418-1424 doi: 10.2136/sssaj1989.03615995005300050019x
    Shimoyama, A., Johns, W. D., 1972. Formation of Alkanes from Fatty Acids in the Presence of CaCO3. Geochimica et Cosmochimica Acta, 36(1): 87-91 doi: 10.1016/0016-7037(72)90122-6
    Smith, J. A., Galan, A., 1995. Sorption of Nonionic Organic Contaminants to Single and Dual Organic Cation Bentonites from Water. Environ. Sci. Technol. , 29(3): 685-692 doi: 10.1021/es00003a016
    Stannage, W., 1988. Some Problems in Petroleum Geochemistry. Journal of Petroleum Geology, 11(4): 415-428 doi: 10.1111/j.1747-5457.1988.tb00829.x
    Taulbee, D. N., Seibert, E. D., 1987. Comparison of Hydrocarbon Pyrolysis Products from a Devonian Type Ⅱ Kerogen to Those from Kerogen/Mineral Blends. Energy & Fuels, 1: 514-519
    Tissot, B., Durand, B., Espitalie, J., et al., 1974. Influence of Nature and Diagenesis of Organic Matter in Formation of Petroleum. AAPG Bulletin, 58: 499-506
    Wang, D. Q., Guo, J. G., Wang, F. Y., et al., 1998. Acidification Effects on the Composition and Structure of Montmorillonite. Acta Mineralogica Sinica, 18(2): 189-193 (in Chinese with English Abstract)
    Wang, X. X., Cai, J. G., Bao, Y. J., 2006. Catalysis of Clay Mineral to Organic Matter in Hydrocarbon Genesis. Marine Origin Petroleum Geology, 11(3): 27-38 (in Chinese with English Abstract)
    Wattel-Koekkoek, E. J. W., van Genuchten, P. P. L., Buurman, P., et al., 2001. Amount and Composition of Clay-Associated Soil Organic Matter in a Range of Kaolinitic and Smectitic Soils. Geoderma, 99: 27-49 doi: 10.1016/S0016-7061(00)00062-8
    Xie, S. C., Pancost, R. D., Yin, H. F., et al., 2005. Two Episodes of Microbial Change Coupled with Permo/Trassic Faunal Mass Extinction. Nature, 434: 494-497 doi: 10.1038/nature03396
    Xie, S. C., Pancost, R. D., Huang, J. H., et al., 2007a. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian-Triassic Crisis. Geology, 35(12): 1083-1086 doi: 10.1130/G24224A.1
    Xie, S. C., Yin, H. F., Hu, C. Y., et al., 2007b. On the Geobiological Evaluation of Hydrocarbon Source Rocks. Frontiers of Earth Science in China, 1(4): 389-398 doi: 10.1007/s11707-007-0041-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(915) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return