Citation: | Xiaoying Shi, Chuanheng Zhang, Ganqing Jiang, Juan Liu, Yi Wang, Dianbo Liu. Microbial Mats in the Mesoproterozoic Carbonates of the North China Platform and Their Potential for Hydrocarbon Generation. Journal of Earth Science, 2008, 19(5): 549-566. |
The well-preserved Mesoproterozoic succession in the North China platform consists mainly of three lithological associations including peritidal quartz sandstone, shallow marine and lagoonal dark to black shales, and shallow epeiric carbonates, with a total thickness of up to 8 000 m. In addition to well-documented microplants, macroalgae, and microbial buildups, abundant microbially induced sedimentary structures (MISS) and mat-related sediments have been recognized in these rocks. Intensive microbial mat layers and MISS are especially well preserved in the carbonates of the upper Gaoyuzhuang (高于庄) (ca. 1.5 Ga) and lower Wumishan (雾迷山) (ca. 1.45 Ga) formations, indicating diversified microbial activities and a high organic production. In these petrified biomats, putative microbial fossils (both coccoidal and filamentous) and framboidal pyrites have been identified. The abundance of authigenic carbonate minerals in the host rocks, such as, acicular aragonites, rosette barites, radial siderites, ankerites, and botryoidal carbonate cements, suggests authigenic carbonate precipitation from anaerobic oxidation of methane (AOM) under anoxic/euxinic conditions. Warm climate and anoxic/euxinic conditions in the Mesoproterozoic oceans may have facilitated high microbial productivity and organic burial in sediments. Although authigenic carbonate cements may record carbonate precipitation from anaerobic methane oxidation, gas blister (or dome) structures may indicate gas release from active methanogenesis during shallow burial. Bituminous fragments in mat-related carbonates also provide evidence for hydrocarbon generation. Under proper conditions, the Mesoproterozoic mat-rich carbonates will have the potential for hydrocarbon generation and serve as source rocks. On the basis of petrified biomats, a rough estimation suggests that the Mesoproterozoic carbonates of the North China platform might have a hydrocarbon production potential in the order of 10×108 t.
Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite Reef from the Early Archaean Era of Australia. Nature, 441: 714-718 doi: 10.1038/nature04764 |
Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142 doi: 10.1126/science.1069651 |
Arnold, G. L., Anbar, A. D., Barling, J., et al., 2004. Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans. Science, 304(5667): 87-90 doi: 10.1126/science.1091785 |
Bahr, A., Pape, T., Bohrmann, G., et al., 2007. Authigenic Carbonate Precipitates from the NE Black Sea: A Mineralogical, Geochemical, and Lipid Biomarker Study. Int. J. Earth Sci. , Doi: 10.1007/S00531-007-0264-1 |
Bekker, A., Holland, H. D., Wang, P. L., et al., 2004. Dating the Rise of Atmospheric Oxygen. Nature, 427(6970): 117-120 doi: 10.1038/nature02260 |
Berner, R. A., Canfield, D. E., 1989. A New Model for Atmospheric Oxygen over Phanerozoic Time. Amer. Jour. Sci. , 289: 333-361 doi: 10.2475/ajs.289.4.333 |
Berner, R. A., Petsch, S. T., Lake, J. A., et al., 2000. Isotope Fractionation and Atmospheric Oxygen: Implications for Phanerozoic O2 Evolution. Science, 287: 1630-1633 doi: 10.1126/science.287.5458.1630 |
Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626 doi: 10.1038/35036572 |
Bouougri, E. H., Porada, H., 2007. Siliciclastic Biolaminites Indicative of Widespread Microbial Mats in the Neoproterozoic Nama Group of Namibia. J. Afr. Earth Sci. , 48(1): 38-48 doi: 10.1016/j.jafrearsci.2007.03.004 |
Bouougri, E. H., Porada, H., 2002. Mat-Related Sedimentary Structures in Neoproterozoic Peritidal Passive Margin Deposits of the West African Craton (Anti-Atlas, Morocco). Sediment. Geol. , 153(3-4): 85-106 doi: 10.1016/S0037-0738(02)00103-3 |
Brocks, J. J., Buick, R., Logan, G. A., et al., 2003. Composition and Syngeneity of Molecular Fossils from the 2.78 to 2.45 Billion-Year-Old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim. Cosmochim. Acta, 67(22): 4289-4319 doi: 10.1016/S0016-7037(03)00208-4 |
Brocks, J. J., Love, G. D., Summons, R. E., et al., 2005. Biomarker Evidence for Green and Purple Sulphur Bacteria in a Stratified Palaeoproterozoic Sea. Nature, 437(7060): 866-870 doi: 10.1038/nature04068 |
Canet, C., Prol-Ledesma, R. M., Melgarejo, J. C., et al., 2003. Methane-Related Carbonates Formed at Submarine Hydrothermal Springs: A New Setting for Microbially-Derived Carbonates? Mar. Geol. , 199(3-4): 245-261 doi: 10.1016/S0025-3227(03)00193-2 |
Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396(6710): 450-453 doi: 10.1038/24839 |
Canfield, D. E., 2005. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. , 33: 1-36 doi: 10.1146/annurev.earth.33.092203.122711 |
Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(808): 92-95 |
Cao, R. J., Yuan, X. L., 2003. Brief History and Current Status of Stromatolite Study in China. Acta Micropalaeontologica Sinica, 20(1): 5-14 (in Chinese with English Abstract) |
Catling, D. C., Claire, M. W., 2005. How Earth's Atmosphere Evolved to an Oxic State: A Status Report. Earth Planet. Sci. Lett. , 237: 1-20 doi: 10.1016/j.epsl.2005.06.013 |
Catling, D. C., Claire, M. W., Zahnle, K. J., 2007. Anaerobic Methanotrophy and the Rise of Atmospheric Oxygen. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365: 1867-1888 doi: 10.1098/rsta.2007.2047 |
Cavalier-Smith, T., 2006. Cell Evolution and Earth History: Stasis and Revolution. Philos. Trans. Roy. Soc. B: Biol. Sci. , 361: 969-1006 doi: 10.1098/rstb.2006.1842 |
Chen, J., Zhang, P., Gao, Z., et al., 1999. Stratigraphic Lexicon of China—The Mesoproterozoic. Geological Publishing House, Beijing. 89 (in Chinese with English Abstract) |
Claire, M. W., Catling, D. C., Zahnle, K. J., 2006. Biogeochemical Modelling of the Rise in Atmospheric Oxygen. Geobiology, 4(4): 239-269 doi: 10.1111/j.1472-4669.2006.00084.x |
Dornbos, S. Q., Noffke, N., Hagadorn, J. W., 2007. Mat-Decay Features. In: Schiber, J., Bose, P. K., Erikson, P. G., et al., eds., Atlas of Microbial Mat Features Preserved with the Clastic Rock Record. Elsevier, Amsterdam. 106-110 |
Draganits, E., Noffke, N., 2004. Siliciclastic Stromatolites and Other Microbially Induced Sedimentary Structures in an Early Devonian Barrier-Island Environment (Muth Formation, NW Himalayas). Jour. Sediment. Res. , 74: 191-202 doi: 10.1306/091903740191 |
Eigenbrode, J. L., Freeman, K. H., 2006. Late Archean Rise of Aerobic Microbial Ecosystems. Proc. Natl. Acad. Sci. USA, 103(43): 15759-15764 doi: 10.1073/pnas.0607540103 |
Eriksson, P. G., Schieber, J., Bouougri, E., et al., 2007. Classification of Structures Left by Microbial Mats in Their Host Sediments. In: Schiber, J., Bose, P. K., Erikson, P. G., et al., eds., Atlas of Microbial Mat Features Preserved with the Clastic Rock Record. Elsevier, Amsterdam. 39-52 |
Field, C. B., Behrenfeld, M. J., Randerson, J. T., et al., 1998. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281(5374): 237-240 doi: 10.1126/science.281.5374.237 |
Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744-747 doi: 10.1038/nature05345 |
Gao, L., Zhang, C., Shi, X., et al., 2007. A New SHRIMP Age of the Xiamaling Formation in the North China Plate and Its Geological Significance. Acta Geologica Sinica, 81(6): 1103-1109 doi: 10.1111/j.1755-6724.2007.tb01032.x |
Gerdes, G., Klenke, T., Noffke, N., 2000. Microbial Signatures in Peritidal Siliciclastic Sediments: A Catalogue. Sedimentology, 47(2): 279-308 |
Gerdes, S., 2007. Structures Left by Modern Microbial Mats in Their Host Sediments. In: Schiber, J., Bose, P. K., Erikson, P. G., et al., eds., Atlas of Microbial Mat Features Preserved with the Clastic Rock Record. Elsevier, Amsterdam. 5-38 |
Gontharet, S., Pierre, C., Blanc-Valleron, M. M., et al., 2007. Nature and Origin of Diagenetic Carbonate Crusts and Concretions from Mud Volcanoes and Pockmarks of the Nile Deep-Sea Fan (Eastern Mediterranean Sea). Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 54(11-13): 1292-1311 doi: 10.1016/j.dsr2.2007.04.007 |
Habicht, K. S., Gade, M., Thamdrup, B., et al., 2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298(5602): 2372-2374 doi: 10.1126/science.1078265 |
Holland, H. D., 2002. Volcanic Gases, Black Smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta, 66(21): 3811-3826 doi: 10.1016/S0016-7037(02)00950-X |
Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philos. Trans. Roy. Soc. B: Biol. Sci. , 361(1470): 903-915 doi: 10.1098/rstb.2006.1838 |
Javaux, E. J., Knoll, A. H., Walter, M. R., 2004. TEM Evidence for Eukaryotic Diversity in Mid-Proterozoic Oceans. Geobiology, 2(3): 121-132 doi: 10.1111/j.1472-4677.2004.00027.x |
Jiang, G., Shi, X., Zhang, S., 2006. Methane Seeps, Methane Hydrate Destabilization, and the Late Neoproterozoic Postglacial Cap Carbonates. Chin. Sci. Bull. , 51(10): 1152-1173 doi: 10.1007/s11434-006-1152-y |
Jin, Z., Wang, Q., 2004. New Advancement in Research of China's Typical Superimposed Basins and Reservoiring: A Case Study of the Tarim Basin. Science in China (Series D), 34(Z1): 1-12 (in Chinese) |
Jorgensen, B. B., Boettcher, M. E., Lueschen, H., et al., 2004. Anaerobic Methane Oxidation and a Deep H2S Sink Generate Isotopically Heavy Sulfides in Black Sea Sediments. Geochim. Cosmochim. Acta, 68(9): 2095-2118 doi: 10.1016/j.gca.2003.07.017 |
Kah, L. C., Lyons, T. W., Frank, T. D., 2004. Low Marine Sulphate and Protracted Oxygenation of the Proterozoic Biosphere. Nature, 431(7010): 834-838 doi: 10.1038/nature02974 |
Kasting, J. F., 2004. When Methane Made Climate. Sci. Am. , 291(1): 78-85 doi: 10.1038/scientificamerican0704-78 |
Kasting, J. F., Ono, S., 2006. Palaeoclimates: The First Two Billion Years. Philos. Trans. Roy. Soc. B: Biol. Sci. , 361(1470): 917-929 doi: 10.1098/rstb.2006.1839 |
Kasting, J. F., Siefert, J. L., 2002. Life and the Evolution of Earth's Atmosphere. Science, 296(5570): 1066-1068 doi: 10.1126/science.1071184 |
Kerr, R. A., 2004. Low Oxygen in Old Oceans. Science, 304(5667): 13 doi: 10.1126/science.2004.304.5667.twis |
Kershaw, S., Li, Y., Crasquin-Soleau, S., et al., 2007. Earliest Triassic Microbialites in the South China Block and Other Areas: Controls on Their Growth and Distribution. Facies, 53(3): 409-425 doi: 10.1007/s10347-007-0105-5 |
Knoll, A. H., 2003. The Geological Consequences of Evolution. Geobiology, 1(1): 3-14 doi: 10.1046/j.1472-4669.2003.00002.x |
Knoll, A. H., Javaux, E. J., Hewitt, D., et al., 2006. Eukaryotic Organisms in Proterozoic Oceans. Philos. Trans. Roy. Soc. B: Biol. Sci. , 361(1470): 1023-1038 doi: 10.1098/rstb.2006.1843 |
Kump, L. R., 2008. The Rise of Atmospheric Oxygen. Nature, 451(7176): 277-278 doi: 10.1038/nature06587 |
Ma, L. F., Qiao, X. F., Ming, L. R., et al., 2002. Atlas of Geological Maps of China. Geological Publishing House, Beijing. 348 (in Chinese with English Abstract) |
Ma, Y., Cai, X., Li, G., 2005. Basic Characteristics and Concentration of the Puguang Gas Field in the Sichuan Basin. Acta Geologica Sinica, 79(6): 858-865 (in Chinese with English Abstract) |
Mazzini, A., Svensen, H., Hovland, M., et al., 2006. Comparison and Implications from Strikingly Different Authigenic Carbonates in a Nyegga Complex Pockmark, G11, Norwegian Sea. Mar. Geol. , 231(1-4): 89-102 doi: 10.1016/j.margeo.2006.05.012 |
McFadden, K. A., Huang, J., Chu, X. L., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proc. Natl. Acad. Sci. USA, 105(9): 3197-3202 doi: 10.1073/pnas.0708336105 |
Mei, M. X., Meng, Q. F., Liu, Z. R., 2007. Progress in the Study of Microbially Induced Sedimentary Structures—A Review. Journal of Paleogeography, 9(4): 353-365 (in Chinese with English Abstract) |
Michael, T. W., Jed, D., Gregor, P. E., et al., 2002. Microbial Carbonates as Indicators of Environmental Change and Biotic Crises in Carbonate Systems: Examples from the Late Devonian, Alberta Basin, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1-3): 127-151 doi: 10.1016/S0031-0182(01)00476-X |
Michaelis, W., Seifert, R., Nauhaus, K., et al., 2002. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 297: 1013-1015 doi: 10.1126/science.1072502 |
Noffke, N., Eriksson, K. A., Hazen, R. M., et al., 2006. A New Window into Early Archean Life: Microbial Mats in Earth's Oldest Siliciclastic Tidal Deposits (3.2 Ga Moodies Group, South Africa). Geology, 34(4): 253-256 doi: 10.1130/G22246.1 |
Noffke, N., Gerdes, G., Klenke, T., 2003. Benthic Cyanobacteria and Their Influence on the Sedimentary Dynamics of Peritidal Depositional Systems (Siliciclastic, Evaporitic Salty, and Evaporitic Carbonatic). Earth-Sci. Rev. , 62(1-2): 163-176 doi: 10.1016/S0012-8252(02)00158-7 |
Noffke, N., Gerdes, G., Klenke, T., et al., 2001. Microbially Induced Sedimentary Structures: A New Category within the Classification of Primary Sedimentary Structures. Palaios, 71: 649-656 |
Noffke, N., Paterson, D., 2008. Microbial Interactions with Physical Sediment Dynamics, and Their Significance for the Interpretation of Earth's Biological History. Geobiology, 6(1): 1-4 |
Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., et al., 2003. Methane-Rich Proterozoic Atmosphere? Geology, 31(1): 87-90 doi: 10.1130/0091-7613(2003)031<0087:MRPA>2.0.CO;2 |
Peckmann, J., Goedert, J. L., 2005. Geobiology of Ancient and Modern Methane-Seeps. Palaeogeography, Palaeoclimatology, Palaeoecology, 227(1-3): 1-5 doi: 10.1016/j.palaeo.2005.02.016 |
Peckmann, J., Thiel, V., 2004. Carbon Cycling at Ancient Methane-Seeps. Chem. Geol. , 205(3-4): 443-467 doi: 10.1016/j.chemgeo.2003.12.025 |
Pflüger, F., 1999. Matground Structures and Redox Facies. Palaios, 14(1): 25-39 doi: 10.2307/3515359 |
Pierre, C., Fouquet, Y., 2007. Authigenic Carbonates from Methane Seeps of the Congo Deep-Sea Fan. Geo-Mar. Lett. , 27(2): 249 |
Porada, H., Ghergut, J., Bouougri, E. H., 2008. Kinneyia-Type Wrinkle Structures—Critical Review and Model of Formation. Palaios, 23(2): 65-77 doi: 10.2110/palo.2006.p06-095r |
Porada, H., Hafid, B. E., 2007. Wrinkle Structures—A Critical Review. Earth-Sci. Rev. , 81(3-4): 199-215 doi: 10.1016/j.earscirev.2006.12.001 |
Poulton, S. W., Fralick, P. W., Canfield, D. E., 2004. The Transition to a Sulphidic Ocean Approximately 1.84 Billion Years Ago. Nature, 431(7005): 173-177 doi: 10.1038/nature02912 |
Pruss, S., Fraiser, M., Bottjer, D. J., 2004. Proliferation of Early Triassic Wrinkle Structures: Implications for Environmental Stress Following the End-Permian Mass Extinction. Geology, 32(5): 461-464 doi: 10.1130/G20354.1 |
Qiao, X., Gao, L., Zhang, C., 2007. New Idea of the Meso- and Neoproterozoic Chronostratigraphic Chart and Tectonic Environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509 (in Chinese with English Abstract) |
Qin, J. Z., Liu, B. Q., Zheng, L. J., et al., 2006. Study on Capability of Hydrocarbon Generation and Expulsion from Marine Carbonate Source Rocks. Oil and Gas Geology, 27(3): 348-355 (in Chinese with English Abstract) |
Qin, J. Z., Zheng, L. J., Tenger, et al., 2007. Study on the Restitution Coefficient of Original Total Organic Carbon for High Mature Marine Hydrocarbon Source Rocks. Earth Science—Journal of China University of Geosciences, 32(6): 853-860 (in Chinese with English Abstract) |
Reitner, J., Peckmann, J., Blumenberg, M., et al., 2005a. Concretionary Methane-Seep Carbonates and Associated Microbial Communities in Black Sea Sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227(1-3): 18-30 doi: 10.1016/j.palaeo.2005.04.033 |
Reitner, J., Peckmann, J., Reimer, A., et al., 2005b. Methane-Derived Carbonate Build-Ups and Associated Microbial Communities at Cold Seeps on the Lower Crimean Shelf (Black Sea). Facies, 51(1-4): 71-84 |
Riding, R., 2000. Microbial Carbonates: The Geological Record of Calcified Bacterial-Algal Mats and Biofilms. Sedimentology, 47(S1): 179-214 |
Rouxel, O. J., Bekker, A., Edwards, K. J., 2005. Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State. Science, 307: 1088-1091 doi: 10.1126/science.1105692 |
Sarkar, S., Banerjee, S., Samanta, P., et al., 2006. Microbial Mat-Induced Sedimentary Structures in Siliciclastic Sediments: Examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, MP, India. Journal of Earth System Science, 115(1): 49-60 doi: 10.1007/BF02703025 |
Sarkar, S., Bose, P. K., Samanta, P., et al., 2008. Microbial Mat Mediated Structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and Their Implications for Proterozoic Sedimentation. Precambrian Research, 162(1-2): 248-263 doi: 10.1016/j.precamres.2007.07.019 |
Schieber, J., 1999. Microbial Mats in Terrigenous Clastics: The Challenge of Identification in the Rock Record. Palaios, 14(1): 3-12 doi: 10.2307/3515357 |
Schieber, J., 2004. Microbial Mats in the Silisiclastic Rock Record: A Summary of the Diagnostic Features. In: Eriksson, P. G., Altermann, W., Nelson, D. R., et al., eds., The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam. 663-673 |
Schieber, J., 2007. Microbial Mats on Muddy Substrates—Examples of Possible Sedimentary Features and Underlying Processes. In: Schieber, J., Bose, P. K., Erikson, P. G., et al., eds., Atlas of Microbial Mat Features Preserved with the Clastic Rock Record. Elsevier, Amsterdam. 117-134 |
Schopf, J. W., 2006. Fossil Evidence of Archaean Life. Philos. Trans. Roy. Soc. B: Biol. Sci. , 361(1470): 869-885 doi: 10.1098/rstb.2006.1834 |
Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 456-459 doi: 10.1038/nature06811 |
Shapiro, R. S., 2000. A Comment on the Systematic Confusion of Thrombolites. Palaios, 15: 166-169 doi: 10.1669/0883-1351(2000)015<0166:ACOTSC>2.0.CO;2 |
Shen, Y., Canfield, D. E., Knoll, A. H., 2002. Middle Proterozoic Ocean Chemistry: Evidence from the McArthur Basin, Northern Australia. Am. J. Sci. , 302(2): 81-109 doi: 10.2475/ajs.302.2.81 |
Shen, Y., Knoll, A. H., Walter, M. R., 2003. Evidence for Low Sulphate and Anoxia in a Mid-Proterozoic Marine Basin. Nature, 423(6940): 632-635 doi: 10.1038/nature01651 |
Shi, X. Y., Chen, C. C., 2006. Microbially Induced Sedimentary Structures (MISS) from the Changcheng Group (ca. 1.6 Ga), North China Platform, and Their Implications for an Oxygen-Defficient Shallow Sea Environment. In: Yang, Q., Wang, Y., Weldon, E. A., eds., Ancient Life and Modern Approaches. China Univ. Sci. Tech. Press, Hefei. 188-189 |
Shi, X. Y., Wang, X. Q., Jiang, G. Q., et al., 2008. Pervassive Microbial Mat Colonization on Mesoproterozoic Peritidal Silisiclastic Substrates: An Example from the Huangqikou Formation (ca. 1.6 Ga) in Helan Mountains, NW China. Geological Review, 54(5): 577-586 (in Chinese with English Abstract) |
Song, T. R., 2007. The Sedimentary Facies Indicators and Depositional Environmental Model for the Mesoproterozoic Changcheng System in the Shisanling Area, Beijing. Journal of Paleogeography, 9(5): 461-472 (in Chinese with English Abstract) |
Wang, Y. B., Tong, J. N., Wang, J. S., et al., 2005. Calcimicrobialite after End-Permian Mass Extinction in South China and Its Palaeoenvironmental Significance. Chinese Science Bulletin, 50(5): 665-671 |
Xiao, S., Zhang, Y., Knoll, A. H., 1998. Three-Dimensional Preservation of Algae and Animal Embryos in a Neoproterozoic Phosphorite. Nature, 391: 553-558 doi: 10.1038/35318 |
Xie, S. C., Yin, H. F., Xie, X. N., 2007. On the Geobiological Evaluation of Hydrocarbon Source Rocks. Earth Science—Journal of China University of Geosciences, 32(6): 727-740 (in Chinese with English Abstract) |
Xie, X. N., Yin, H. F., Xie, S. C., 2007. Comparison on Forward and Inverse Analysis Methods of Marine Hydrocarbon Source Rocks. Earth Science—Journal of China University of Geosciences, 32(6): 861-867 (in Chinese with English Abstract) |
Xing, Y., Gao, Z., Wang, Z., et al., 1996. Stratigraphic Lexicon of China: The Neoproterozoic. Geological Publishing House, Beijing. 117 (in Chinese with English Abstract) |
Yin, L. M., Zhu, M. Y., Knoll, A. H., et al., 2007. Doushantuo Embryos Preserved inside Diapause Egg Cysts. Nature, 446(7136): 661-663 doi: 10.1038/nature05682 |
Yuan, X., Xiao, S., Taylor, T. N., 2005. Lichen-Like Symbiosis 600 Million Years Ago. Science, 308: 1017-1020 doi: 10.1126/science.1111347 |
Zahnle, K. J., Claire, M. W., Catling, D. C., 2006. The Loss of Mass-Independent Fractionation in Sulfur due to a Palaeoproterozoic Collapse of Atmospheric Methane. Geobiology, 4(4): 271-283 doi: 10.1111/j.1472-4669.2006.00085.x |
Zhang, S. C., Wang, R. L., Jin, Z. J., et al., 2006. The Relationship between the Cambrian-Ordovician High-TOC Source Rock Development and Paleoenvironment Variations in the Tarim Basin, Western China: Carbon and Oxygen Isotope Evidence. Acta Geologica Sinica, 80(3): 459-466 (in Chinese with English Abstract) |