Citation: | Jianwei Li, P M Vasconcelos. Growth Rate Estimates of Supergene Manganese Nodule by 40Ar/39Ar Isotopic Dating. Journal of Earth Science, 2004, 15(3): 312-323. |
Increasing world-class, high-grade, and metals-enriched supergene manganese ore deposits have been discovered in the last two decades, making them more and more economically important. However, data on the timing and duration of their formation are sparse, mainly due to the difficulties extracting datable minerals suited to traditional radiometric dating methods. Hollandite, cryptomelane, coronadite, todorokite, and manjiroite are common manganese oxide minerals in supergene environments. These minerals host potassium of variable amounts from 0.1 wt% to 5.0 wt% in their structural sites. This geochemical property provides possibility to date supergene manganese ores by using K-Ar and 40Ar/39Ar methods. In this study, we perform 40Ar/39Ar dating on a 7.1-cm-thick botryoidal manganese nodule from an ancient weathering profile at Mount Tabor, central Queensland, Australia. Laser microprobe incremental analyses of distinct growth bands, from the inner core through the intermediate bands to the outermost crusts of the nodule, have yielded high quality 40Ar/39Ar ages at 27.3 Ma, 20.9 Ma, 19.2 Ma, and 16.1 Ma, respectively. The age results permit preliminary estimates on the average growth rates of the nodule varying from 4.7×10-3 mm/ka to 7.6×10-3 mm/ka to 9.0×10-3 mm/ka, from the core to the rim.Resultsof this study are of significance in our understanding of the mode, mechanism, process, and climatic conditions in the formation of supergene manganese ore deposits.
Archer, M., Hand, S. J., Godthelp, H., 1991. Riversleigh: The Story of Animas in Ancient Forest of Inland Australia. Reed Books, Sydney. 264 |
Banakar, V. K., Hein, J. R., 2000. Growth Response of a Deep-Water Ferromanganese Crust to Evolution of the Neogene Indian Ocean. Marine Geology, 162: 529-540 doi: 10.1016/S0025-3227(99)00077-8 |
Bollhöer, A., Eisenhauer, A., Frank, N., et al., 1996. Thorium and Uranium Isotopes in a Manganese Nodule from the Peru Basin Determined by Alpha Spectrometry and Thermal Ionization Mass Spectrometry: Are Manganese Supply and Growth Related to Climate? Geologic Rundsch, 85: 577-585 |
Dammer, D., Chivas, A. R., McDougall, I., 1996. Isotopic Dating of Supergene Manganese Oxides from the Groote Eylandt Deposit, Northern Territory, Australia. Economic Geology, 91: 386-401 doi: 10.2113/gsecongeo.91.2.386 |
Feng, Y. X., Vasconcelos, P. M., 2001. Quaternary Continental Weathering Geochronology by Laser-Heating 40Ar/39Ar Analysis of Supergene Cryptomelane. Geology, 29: 635-638 |
Han, X. Q., Jin, X. L., Yang, S. F., et al., 2003. Rhythmic Growth of Pacific Ferromanganese Nodules and Their Milankovitch Climatic Origin. Earth and Planetary Science Letters, 211: 143-157 doi: 10.1016/S0012-821X(03)00169-9 |
Hem, J. D., 1978. Redox Processes at Surface of Manganese Oxide and Their Effects on Aqueous Metal Ions. Chemical Geology, 21: 199-218 doi: 10.1016/0009-2541(78)90045-1 |
Hénocque, O., Ruffet, G., Colin, F., et al., 1998. 40Ar/39Ar Dating of West African Lateritic Cryptomelane. Geochimica et Cosmochimica Acta, 62: 2739-2756 doi: 10.1016/S0016-7037(98)00185-9 |
Li, J.W., Vasconcelos, P.M., 2002. Cenozoic Continental Weathering and Its Implications for Paleoclimate: Evidence from 40Ar/39Ar Geochronology of Supergene K-Mn Oxides in Mt. Tabor, Central Queensland, Australia. Earth and Planetary Science Letters, 200: 223-239 doi: 10.1016/S0012-821X(02)00594-0 |
Llorca, S.M., 1993. Metallogeny of Supergene Cobalt Mineralization, New Caledonia. Australian Journal of Earth Sciences, 40: 377-385 doi: 10.1080/08120099308728089 |
Müller, W., 2003. Strengthening the Link between Geochronology, Textures and Petrology. Earth and Planetary Science Letters, 206: 237-251 doi: 10.1016/S0012-821X(02)01007-5 |
Mollen, R. G., Forbes, V. R., Jensen, A. R., et al., 1972. Geology of the Eddystone, Tarrom, and Western Part of the Mundubbera Sheet Areas, Queensland. Australian Geological Survey Organisation, Canberra. 127 |
O'Nions, P. K., Frank, M., Von Blanckenburg, F., et al., 1998. Secular Variation of Nd and Pb Isotopes in Ferromanganese Crusts from the Atlantic, Indian and Pacific Oceans. Earth and Planetary Science Letters, 155: 5-28 |
Renne, P. R., Swisher, C.C., Deino, A. L., et al., 1998. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chemical Geology, 145: 117-152 doi: 10.1016/S0009-2541(97)00159-9 |
Ruffet, G., Innocent, C., Michard, A., et al., 1996. A Geochronological 40Ar/39Ar and 87Rb/87Sr Study of K-Mn Oxides from the Weathering Sequence of Azul, Brazil. Geochimica et Cosmochimica Acta, 60: 2219-2232 doi: 10.1016/0016-7037(96)00080-4 |
Smith, P. E., Evensen, N. M., York, D., et al., 1998. Single-Grain 40Ar-39Ar Ages of Glauconies: Implications for the Geologic Time Scale and Global Sea Level Variations. Science, 279: 1517-1519 doi: 10.1126/science.279.5356.1517 |
Truswell, E.M., 1993. Vegetation Changes in the Australian Tertiary in Response to Climatic and Paleogeographic Forcing Factors. Australian Systematic Botany, 6: 533-557 doi: 10.1071/SB9930533 |
Varentsov, I.M., 1996. Manganese Ores of Supergene Zones: Geochemistry of Formation. Kluwer Academic Publishers, Dordrecht. 186 |
Vasconcelos, P. M., 1999. 40Ar/39Ar Geochronology of Supergene Process in Ore Deposits. Reviews in Economic Geology, 12: 73-113 |
Vasconcelos, P.M., Becker, T.A., Renne, P. R., et al., 1992. Age and Duration of Weathering by 40Ar/39Ar Analysis of Potassium-Manganese Oxides. Science, 258: 451-455 doi: 10.1126/science.258.5081.451 |
Vasconcelos, P.M., Renne, P. R., Becker, T.A., et al., 1994. Mechanisms and Kinetics of Atmospheric, Radiogenic, and Nucleogenic Argon Release from Cryptomelane during 40Ar/39Ar Analysis. Geochimica et Cosmochimica Acta, 59: 2057-2070 |
Vasconcelos, P. M., Renne, P. R., Brimhall, G. H., et al., 1995. Direct Dating of Weathering Phenomena by 40Ar/39Ar and K-Ar Analysis of Supergene K-Mn Oxides. Geochimica et Cosmochimica Acta, 58: 1635-1665 |