Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 19 Issue 5
Oct 2008
Turn off MathJax
Article Contents
Wenbo Su, Yongbiao Wang, D Cramer Bradley, Munnecke Axel, Zhiming Li, Lipu Fu. Preliminary Estimation of Paleoproductivity via TOC and Habitat Types: Which Method Is More Reliable?-A Case Study on the Ordovician-Silurian Transitional Black Shales of the Upper Yangtze Platform, South China. Journal of Earth Science, 2008, 19(5): 534-548.
Citation: Wenbo Su, Yongbiao Wang, D Cramer Bradley, Munnecke Axel, Zhiming Li, Lipu Fu. Preliminary Estimation of Paleoproductivity via TOC and Habitat Types: Which Method Is More Reliable?-A Case Study on the Ordovician-Silurian Transitional Black Shales of the Upper Yangtze Platform, South China. Journal of Earth Science, 2008, 19(5): 534-548.

Preliminary Estimation of Paleoproductivity via TOC and Habitat Types: Which Method Is More Reliable?-A Case Study on the Ordovician-Silurian Transitional Black Shales of the Upper Yangtze Platform, South China

Funds:

the National Natural Science Foundation of China 40372057

the National Natural Science Foundation of China 40772076

the SINOPEC project G0800-06-ZS-319

More Information
  • Corresponding author: Su Wenbo, suwenbo@cugb.edu.cn
  • Received Date: 20 May 2008
  • Accepted Date: 01 Jul 2008
  • New total organic carbon (TOC) data from the two Ordovician-Silurian transitional graptolite-bearing black shale intervals, the Wufeng (五峰) Formation and the Longmaxi (龙马溪) Formation in Central Guizhou (贵州) and West Hubei (湖北), respectively, as well as previously reported TOC data from the same intervals in other places on the Yangtze platform of South China, have been used to produce an initial estimate of the primary paleoproductivity via a conventional inverse method (i.e., Rpp-inverse). The values of the Rpp-inverse are estimated to be 32 (43-21) gC/(m2·a) (Wufeng Formation) and 21 (27-16) gC/(m2·a) (Longmaxi Formation). Also, simultaneously, the habitat types (i.e., HT; cf., BA: benthic assemblage) and their temporal and spatial changes have been documented from the same succession, and an initial estimate of the primary paleoproductivity has been produced using a forward method (i.e., Rpp-forward). Being bounded mainly by the peritidal to inner-shelf environment shelly-facies or mixed-facies successions with BA1 to BA3 faunas both at the top and the base, which indicates the habitat types from HT Ⅱ1 to HT Ⅲ2, the biohabitat type of the two graptolite-bearing black shale intervals can be limited to HT Ⅲ to HT Ⅳ, corresponding to the inner shelf to the outer shelf, with depths from roughly 60 m to 200-300 m. Based on the current data from the South China Sea and the southern part of the East China Sea, values of Rpp-forward should be about 100 to 400 gC/(m2·a). The difference in the results via the two methods suggests that paleoproductivity estimates from the geological strata need to be made cautiously, with particular attention paid to the paleogeographic setting, oxic-anoxic conditions, as also the preservation factor of organic carbon.

     

  • loading
  • Algeo, T. J., Scheckler, S. E., 1998. Terrestrial-Marine Teleconnections in the Devonian: Links between the Evolution of Land Plants, Weathering Processes and Marine Anoxic Events. Philosophical Transactions of the Royal Society of London, Part B-Biological Sciences, 353: 113-130 doi: 10.1098/rstb.1998.0195
    Andel, T. H., 1981. Consider the Incompleteness of the Geological Record. Nature, 294: 397-398 doi: 10.1038/294397a0
    Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C., et al., 2008. The New Chronostratigraphic Classification of the Ordovician System and Its Relations to Regional Series and Stages and to δ13C Chemostratigraphy. Lethaia, 41 (in Press)
    Berner, R. A., 1982. Burial of Organic Carbon and Pyrite Sulfur in the Modern Ocean: Its Geochemical and Environmental Significance. American Journal of Science, 282: 451-473 doi: 10.2475/ajs.282.4.451
    Berner, R. A., 1994. GEOCARB Ⅱ: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 294: 56-91 doi: 10.2475/ajs.294.1.56
    Bralower, T. J., Thierstein, H. R., 1984. Low Productivity and Slow Deep-Water Circulation in Mid-Cretaceous Oceans. Geology, 12: 614-618 doi: 10.1130/0091-7613(1984)12<614:LPASDC>2.0.CO;2
    Brenchley, P. J., Marshall, J. D., Carden, G. A. F., et al., 1994. Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period. Geology, 22: 295-298 doi: 10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2
    Brummer, G. J. A., van Eijden, A. J. M., 1992. "Blue-Ocean" Paleoproductivity Estimates from Pelagic Carbonate Mass Accumulation Rates. Marine Micropaleontology, 19: 99-117 doi: 10.1016/0377-8398(92)90023-D
    Chen, X., 1990. Graptolite Depth Zonation. Acta Paleontologica Sinica, 29: 507-526 (in Chinese with English Abstract)
    Chen, X., Melchin, M. J., Sheets, H. D., et al., 2005. Patterns and Processes of Latest Ordovician Graptolite Extinction and Recovery Based on Data from South China. Journal of Palaeontology, 79: 842-861 doi: 10.1666/0022-3360(2005)079[0842:PAPOLO]2.0.CO;2
    Chen, X., Rong, J. Y., Fan, J. X., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Hirnantian Stage (the Uppermost of the Ordovician System). Episodes, 29(3): 183-196 doi: 10.18814/epiiugs/2006/v29i3/004
    Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204: 353-372 doi: 10.1016/S0031-0182(03)00736-3
    Chen, X., Rong, J. Y., Mitchell, C. E., et al., 2000. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation. Geological Magazine, 137: 623-650 doi: 10.1017/S0016756800004702
    Chen, X., Rong, J. Y., Wang, X. F., et al., 1995. Correlation of the Ordovician Rocks of China: Charts and Explanatory Notes. IUGS Pub. 31. 104
    Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7: 163-181 doi: 10.1029/92PA00181
    Fu, L. P., Song, L. S., 1986. Stratigraphy and Paleontology of Silurian in Ziyang Region (Transitional Belt). Bulletin of the Xi'an Institute of Geology and Mineral Resources, CAGS, 14: 1-198 (in Chinese with English Summary)
    Gradstein, F. M., Ogg, J. G., Smith, A. G., 2004. A New Geologic Time Scale 2004. Cambridge University Press, Cambridge. 464
    Gu, S. Z., Zhang, M. H., Gui, B. W., et al., 2007. An Attempt to Quantitatively Reconstruct the Primary Productivity by Counting the Radiolarian Fossils in Cherts from the Latest Permian Dalong Formation in Southwestern China. Frontiers of Earth Science in China, 1(4): 412-416 doi: 10.1007/s11707-007-0050-1
    Hayes, J. M., Strauss, H., Kaufman, A. J., 1999. The Abundance of 13C in Marine Organic Matter and Isotopic Fractionation in the Global Biogeochemical Cycle of Carbon during the Past 800 Ma. Chemical Geology, 161: 103-125 doi: 10.1016/S0009-2541(99)00083-2
    Herguera, J. C., Berger, W. H., 1991. Paleoproductivity from Benthic Foraminifera Abundance: Glacial to Postglacial Change in the West-Equatorial Pacific. Geology, 19: 1173-1176 doi: 10.1130/0091-7613(1991)019<1173:PFBFAG>2.3.CO;2
    Hu, C. Y., Pan, H. X., Ma, Z. W., et al., 2007. Iron Abundance in the Marine Carbonate as a Proxy of the Paleo-productivity in Hydrocarbon Source Rocks. Earth ScienceJournal of China University of Geosciences, 32(6): 755-758 (in Chinese with English Abstract)
    Huang, J. H., Luo, G. M., Bai, X., et al., 2007. Organic Fraction of the Total Carbon Burial Flux Deduced from Carbon Isotopes across the Permo-Triassic Boundary at Meishan, Zhejiang Province, China. Frontiers of Earth Science in China, 1(4): 425-430 doi: 10.1007/s11707-007-0052-z
    Hunt, J. M., 1996. Petroleum Geochemistry and Geology. Second Edition. Freeman and Company, New York. 743
    Johnson, M. E., Rong, J. Y., Fox, W. T., 1989. Comparison of Late Ordovician Epicontinental Seas and Their Relative Bathymetry in North America and China. Palaios, 4: 43-50 doi: 10.2307/3514732
    Karl, D. M., Knauer, G. A., 1991. Microbial Production and Particle Flux in the Upper 350 m of the Black Sea. Deep-Sea Research, 38: 921-942 doi: 10.1016/S0198-0149(10)80017-2
    Kump, L. R., Arthur, M. A., Patzkowsky, M. E., et al., 1999. A Weathering Hypothesis for Glaciation at High Atmospheric Pco2 during the Late Ordovician. Palaeogeography, Palaeoclimatololgy, Palaeoecology, 152: 173-187 doi: 10.1016/S0031-0182(99)00046-2
    Lange, C. B., Berger, W. H., 1993. Diatom Productivity and Preservation in the Western Equatorial Pacific: The Quaternary Record. In: Berger, W. H., Kroenek, L. W., Mayer, L. A., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results 130. Texas A & M University, College Station. 509-523
    Liu, R. B., Tian, J. C., Wei, Z. H., et al., 2006. Comprehensive Research of Effective Hydrocarbon Source Rock of Lower Strata from Sinian to Silurian System in Southeast Area of Sichuan Province. Natural Gas Geoscience, 17: 824-828 (in Chinese with English Abstract)
    Lyons, T. W., Werne, J. P., Hollander, D. J., et al., 2003. Contrasting Sulfur Geochemistry and Fe/Al and Mo/Al Ratios across the Last Oxic-to-Anoxic Transition in the Cariaco Basin, Venezuela. Chemical Geology, 195: 131-157 doi: 10.1016/S0009-2541(02)00392-3
    Menzel, D., Hopmans, E. C., van Bergen, P. F., et al., 2002. Development of Photic Zone Euxinia in the Eastern Mediterranean Basin during Deposition of Pliocene Sapropels. Marine Geology, 189: 215-226 doi: 10.1016/S0025-3227(02)00479-6
    Meyers, P. A., 1997. Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and Paleoclimatic Processes. Organic Geochemistry, 27: 213-250 doi: 10.1016/S0146-6380(97)00049-1
    Meyers, P. A., 2006. Paleoceanographic and Paleoclimatic Similarities between Mediterranean Sapropels and Cretaceous Black Shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 235: 305-320 doi: 10.1016/j.palaeo.2005.10.025
    Müller, P. J., Suess, E., 1979. Productivity, Sedimentation Rate and Sedimentary Organic Matter in the Oceans—I. Organic Carbon Preservation. Deep-Sea Research, 26A: 1347-1362
    Qin, J. Z., Zheng, L. J., Tenger, 2007. Study on the Restitution Coefficient or Original Total Organic Carbon High Mature Marine Source Rocks. Frontiers of Earth Science in China, 1(4): 482-490 doi: 10.1007/s11707-007-0059-5
    Rong, J. Y., 2006. Originations, Radiations and Biodiversity Changes—Evidence from the Chinese Fossil Record. Science Press, Beijing. 962 (in Chinese with English Summary)
    Rong, J. Y., 1984. Distribution of the Hirnantia Fauna and Its Meaning. In: Bruton, D. L., ed., Aspects of the Ordovician System. Paleontological Contributions from the University of Oslo, 295: 101-112
    Rong, J. Y., Chen, X., Harper, D. A. T., 2002. The Latest Ordovician Hirnantia Fauna (Brachiopoda) in Time and Space. Lethaia, 35: 231-249 doi: 10.1080/00241160260288820
    Rong, J. Y., Zhan, R. B., Harper, D. A. T., 1999. Late Ordovician (Caradoc-Ashgill) Brachiopod Faunas with Foliomena Based on Data from China. Palaios, 14: 412-431 doi: 10.2307/3515394
    Ryther, J. H., 1969. Photosynthesis and Fish Production in the Sea. Science, 166: 72-76 doi: 10.1126/science.166.3901.72
    Siesser, W. G., 1995. Paleoproductivity of the Indian Ocean during the Tertiary Period. Global and Planetary Change, 11: 71-88 doi: 10.1016/0921-8181(95)00003-A
    Su, W. B., 1999. The SMST Subjacent to the Ordovician-Silurian Boundary and Its Potential on Ordovician Chronostratigraphy. In: Kraft, P., Fatka, O., eds., Quo Vadis Ordovician? —Short Papers of 8th Inter. Symp. Ordovician Sys. (Prague). Acta Universitatis Carolinae Geologica, 43: 183-186
    Su, W. B., 2001. Ordovician Sequence Stratigraphy and Sea Level Changes in the Southeast Margin of Yangtze Platform, China. Geological Publishing House, Beijing. 106 (in Chinese)
    Su, W. B., 2007. Ordovician Sea-Level Changes: Evidences from the Yangtze Platform. Acta Paleontologica Sinica, 46(Suppl. ): 471-476
    Su, W. B., He, L. Q., Wang, Y. B., et al., 2003. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Science in China (Series D), 46: 1121-1133
    Su, W. B., Li, Z. M., Ettensohn, F. R., et al., 2007. Tectonic and Eustatic Control on the Distribution of Black-Shale Source Beds in the Wufeng and Longmaxi Formations (Ordovician-Silurian), South China. Frontiers of Earth Science in China, 1(4): 470-481 doi: 10.1007/s11707-007-0058-6
    Su, W. B., Wang, Y. B., Gong, S. Y., 2006. A New Ordovician-Silurian Boundary Section in Guizhou, South China. Geoscience, 20: 409-412 (in Chinese with English Abstract)
    Tan, S. C., Shi, G. Y., 2006. Remote Sensing for Ocean Primary Productivity and Its Spatio-temporal Variability in the China Seas. Acta Geographica Sinica, 61: 1189-1199 (in Chinese with English Abstract)
    Tenger, Gao, C. L., Hu, K., et al., 2007. High-Quality Source Rocks in the Lower Combination in the Northern Upper-Yangtze Area and Their Hydrocarbon Generating Potential. Natural Gas Geoscience, 18: 254-259 (in Chinese with English Abstract)
    Tenger, Gao, C. L., Hu, K., et al., 2006. High-Quality Source Rocks in the Lower Combination in Southeast Upper-Yangtze Area and Their Hydrocarbon Generating Potential. Petroleum Geology & Experiment, 28: 359-365 (in Chinese with English Abstract)
    Wang, H. Z., 1985. Atlas of the Paleogeography of China. Cartographic Publishing House, Beijing. 183 (in Chinese)
    Wang, K., Orth, C. J., Attrep, M. Jr., et al., 1993. The Great Latest Ordovician Extinction on the South China Plate: Chemostratigraphic Studies of the Ordovician Boundary Interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 104: 61-97 doi: 10.1016/0031-0182(93)90120-8
    Wang, X. F., Chen, X., Chen, X. H., et al., 1996. Stratigraphy Lexicon of China—Ordovician System. Geological Publishing House, Beijing. 126 (in Chinese)
    Wang, X. F., Ni, S. Z., Zeng, Q. L., et al., 1987. Biostratigraphy of the Yangtze Gorge Area, Vol. 2: Early Paleozoic Era. Geological Publishing House, Beijing. 641 (in Chinese with English Summary)
    Watanabe, S., Tada, R., Ikehara, K., et al., 2007. Sediment Fabrics, Oxygenation History, and Circulation Modes of Japan Sea during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 247: 50-64 doi: 10.1016/j.palaeo.2006.11.021
    Xie, S. C., Yin, H. F., Xie, X. N., et al., 2007. On the Geobiological Evaluation of Hydrocarbon Source Rocks. Frontiers of Earth Science in China, 1(4): 389-398 doi: 10.1007/s11707-007-0041-2
    Yin, H. F., Ding, M. H., Zhang, K. X., et al., 1995. Dongwuan-Indosinian (Late Permian-Middle Triassic) Ecostratigraphy of the Yangtze Region and Its Margins. Science Press, Beijing. 337 (in Chinese with English Summary)
    Zhan, R. B., Jin, J. S., 2007. Ordovician-Early Silurian (Landovery) Stratigraphy and Paleogeography of the Upper Yangtze Platform, South China. Science Press, Beijing. 169
    Zhang, Y., He, W. H., Feng, Q. L., 2007. Biogeochemically-Based Quantification of Primary Productivity of End-Permian Deep-Water Basin at Dongpan Section, Guangxi, South China. Frontiers of Earth Science in China, 1(4): 405-411 doi: 10.1007/s11707-007-0049-7
    Zhou, L., Huang, J. H., Archer, C., et al., 2007. Molybdenum Isotope Composition from Yangtze Block Continental Margin and Its Indication to Organic Burial Rate. Frontiers of Earth Science in China, 1(4): 417-424 doi: 10.1007/s11707-007-0051-0
    Zhou, M. H., Liang, Q. Y., 2002. Petroleum Geological Conditions of Lower Assemblage in Qianzhong Uplift and Peripheral Regions. Marine Origin Petroleum Geology, 11: 17-24 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(937) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return