Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Si-Wen Zhang, Feng Wang, Ren-Yi Jia, Wen-Liang Xu, Yi-Ni Wang, De-Bin Yang, Hai-Hong Zhang. Trench-Perpendicular Mantle Flow Recorded by Late Mesozoic Intraplate Magmatism and Implications for the Formation of the Eastern Asian Big Mantle Wedge. Journal of Earth Science, 2025, 36(5): 1879-1891. doi: 10.1007/s12583-025-0220-7
Citation: Si-Wen Zhang, Feng Wang, Ren-Yi Jia, Wen-Liang Xu, Yi-Ni Wang, De-Bin Yang, Hai-Hong Zhang. Trench-Perpendicular Mantle Flow Recorded by Late Mesozoic Intraplate Magmatism and Implications for the Formation of the Eastern Asian Big Mantle Wedge. Journal of Earth Science, 2025, 36(5): 1879-1891. doi: 10.1007/s12583-025-0220-7

Trench-Perpendicular Mantle Flow Recorded by Late Mesozoic Intraplate Magmatism and Implications for the Formation of the Eastern Asian Big Mantle Wedge

doi: 10.1007/s12583-025-0220-7
More Information
  • Corresponding author: Feng Wang, jlu_wangfeng@jlu.edu.cn
  • Received Date: 02 Dec 2024
  • Accepted Date: 23 Feb 2025
  • Issue Publish Date: 30 Oct 2025
  • The Paleo-Pacific Plate stagnated in the mantle transition zone beneath northeast Asia during the Late Mesozoic, resulting in the eastern Asian big mantle wedge (BMW). However, its formation mechanism remains unclear. Here, we analyzed elemental and isotopic compositions of 126–60 Ma intraplate basaltic rocks to map the mantle flow pattern and investigate the implications for the formation of the BMW. These rocks exhibit eastward an increase in Ba/Nb, Ba/La, 87Sr/86Sr, and 208Pb/204Pb ratios, while a decrease in Nb/Yb, Zr/Yb, Ta/Yb, and Nb/Nb* ratios, indicating mixing between the fertile mantle and the depleted mantle modified by slab material, implying the occurrence of trench-perpendicular mantle flow. The coeval mantle flow and formation of the BMW, the similar directions of mantle flow and Paleo-Pacific Plate subduction, and migration of basin depocenters indicate trench-perpendicular mantle flow was a key factor in the formation of the BMW. Moreover, these basaltic rocks have elevated δ66Zn values (0.22‰ to 0.52‰), indicating recycled carbonates have been added into their mantle source, which increased the mantle flow velocity. Combined with slab roll-back in the Late Mesozoic, it created the essential conditions for mantle flow to promote the formation of the eastern Asian BMW.

     

  • Electronic Supplementary Materials:   Supplementary materials (Supplementary text; Tables S1–S4; Figure S1) are available in the online version of this article at https://doi.org/10.1007/s12583-025-0220-7.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1 016/s0377-0273(00)00182-7 doi: 10.1016/s0377-0273(00)00182-7
    Chen, Z. H., Schellart, W. P., Strak, V., et al., 2016. Does Subduction-Induced Mantle Flow Drive Backarc Extension? Earth and Planetary Science Letters, 441: 200–210. https://doi.org/10.1016/j.epsl.2016.02.027
    Dannberg, J., Eilon, Z., Faul, U., et al., 2017. The Importance of Grain Size to Mantle Dynamics and Seismological Observations. Geochemistry, Geophysics, Geosystems, 18(8): 3034–3061. https://doi.org/10.1002/2017gc006944
    DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189–202. https://doi.org/10.1016/0012-821x(81)90153-9
    Dong, L. L., Yang, Z. M., Song, M. C., 2023. Prolonged Mantle Modification beneath the North China Craton: Evidence from Contrasting Mafic Dykes in Jiaodong Peninsula. Journal of Earth Science, 34(4): 1150–1164. https://doi.org/10.1007/s1258 3-022-1737-7 doi: 10.1007/s12583-022-1737-7
    Dong, Y., Xiong, S., Wang, F., et al., 2023. Triggering of Episodic Back-Arc Extensions in the Northeast Asian Continental Margin by Deep Mantle Flow. Geology, 51(2): 193–198. https://doi.org/10.1130/g050724.1
    Duarte, J. C., Schellart, W. P., Cruden, A. R., 2013. Three-Dimensional Dynamic Laboratory Models of Subduction with an Overriding Plate and Variable Interplate Rheology. Geophysical Journal International, 195(1): 47–66. https://doi.org/10.1093/gji/ggt257
    Elsasser, W. M., 1971. Sea-Floor Spreading as Thermal Convection. Journal of Geophysical Research, 76(5): 1101–1112. https://doi.org/10.1029/jb076i005p01101
    Fang, W., Dai, L. Q., Zhao, Z. F., et al., 2024. Molybdenum Isotopic Evidence for the Initiation of a Big Mantle Wedge beneath Eastern Asia. Chemical Geology, 662: 122244. https://doi.org/10.1016/j.chemgeo.2024.122244
    Fukao, Y., Obayashi, M., Inoue, H., et al., 1992. Subducting Slabs Stagnant in the Mantle Transition Zone. Journal of Geophysical Research: Solid Earth, 97(B4): 4809–4822. https://doi.org/10.1029/91jb02749
    Fukao, Y., Obayashi, M., Nakakuki, T., 2009. Stagnant Slab: A Review. Annual Review of Earth and Planetary Sciences, 37: 19–46. https://doi.org/10.1146/annurev.earth.36.031207.124224
    Gaillard, F., Malki, M., Iacono-Marziano, G., et al., 2008. Carbonatite Melts and Electrical Conductivity in the Asthenosphere. Science, 322(5906): 1363–1365. https://doi.org/10.1126/science.1164446
    Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959–1975. https://doi.org/10.1016/s0016-7037(98)00121-5
    Gill, J., Hoernle, K., Todd, E., et al., 2021. Basalt Geochemistry and Mantle Flow during Early Backarc Basin Evolution: Havre Trough and Kermadec Arc, Southwest Pacific. Geochemistry, Geophysics, Geosystems, 22(2): e2020GC009339. https://doi.org/10.1029/2020gc009339
    Goes, S., Agrusta, R., van Hunen, J., et al., 2017. Subduction-Transition Zone Interaction: A Review. Geosphere, 13(3): 644–664. https://doi.org/10.1130/ges01476.1
    Guillaume, B., Funiciello, F., Faccenna, C., 2021. Interplays between Mantle Flow and Slab Pull at Subduction Zones in 3D. Journal of Geophysical Research (Solid Earth), 126(5): e2020JB021574. https://doi.org/10.1029/2020jb021574
    Guo, P. Y., Niu, Y. L., Sun, P., et al., 2020. Lithosphere Thickness Controls Continental Basalt Compositions: An Illustration Using Cenozoic Basalts from Eastern China. Geology, 48(2): 128–133. https://doi.org/10.1130/g46710.1
    Guo, Z. X., Yang, Y. T., 2023. Late Mesozoic Basin Evolution in NE China and Its Surrounding Areas, Mechanisms of the Continental-Scale Extensional Regime in East Asia during the Late Jurassic–Early Cretaceous. Earth-Science Reviews, 241: 104418. https://doi.org/10.1016/j.earscirev.2023.104418
    Hauff, F., Hoernle, K., Schmidt, A., 2003. Sr-Nd-Pb Composition of Mesozoic Pacific Oceanic Crust (Site 1149 and 801, ODP Leg 185): Implications for Alteration of Ocean Crust and the Input into the Izu-Bonin-Mariana Subduction System. Geochemistry, Geophysics, Geosystems, 4(8): e2022GL098308. https://doi.org/10.1029/2002gc000421
    Hoernle, K., Abt, D. L., Fischer, K. M., et al., 2008. Arc-Parallel Flow in the Mantle Wedge beneath Costa Rica and Nicaragua. Nature, 451(7182): 1094–1097. https://doi.org/10.1038/nature06550
    Hoernle, K., Tilton, G., Le Bas, M. J., et al., 2002. Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites: Mantle Recycling of Oceanic Crustal Carbonate. Contributions to Mineralogy and Petrology, 142(5): 520–542. https://doi.org/10.1007/s004100100308
    Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821x(88)90132-x
    Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219–229. https://doi.org/10.1038/385219a0
    Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research (Solid Earth), 111(B9): B09305. https://doi.org/10.1029/2005jb004066
    Huang, J., Liu, S. G., Gao, Y. J., et al., 2016. Copper and Zinc Isotope Systematics of Altered Oceanic Crust at IODP Site 1256 in the Eastern Equatorial Pacific. Journal of Geophysical Research (Solid Earth), 121(10): 7086–7100. https://doi.org/10.1002/2016jb013095
    Huang, Z. Y., Yuan, C., Zhang, Y. Y., et al., 2024. Influences of the Stagnant Pacific Slab beyond Its Westernmost Edge: Insights from the Cenozoic Alkaline Basalts in the Dariganga Volcanic Field, SE Mongolia. Journal of Geophysical Research: Solid Earth, 129(10): e2024JB028884. https://doi.org/10.1029/2024jb 028884 doi: 10.1029/2024jb028884
    Jiang, D. S., Xu, X. S., Erdmann, S., et al., 2024. Ba-Mg Isotopic Evidence from an OIB-Type Diabase for a Big Mantle Wedge beneath East Asia in the Early Cretaceous. Chemical Geology, 646: 121917. https://doi.org/10.1016/j.chemgeo.2023.121917
    Jin, Q. Z., Huang, J., Liu, S. C., et al., 2020. Magnesium and Zinc Isotope Evidence for Recycled Sediments and Oceanic Crust in the Mantle Sources of Continental Basalts from Eastern China. Lithos, 370: 105627. https://doi.org/10.1016/j.lithos.2020.105627
    Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120–180 Km Depth. Nature, 437(7059): 724–727. https://doi.org/10.1038/nature03971
    Khan, A., Faisal, S., Larson, K. P., et al., 2023. Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution. Journal of Earth Science, 34(1): 70–85. https://doi.org/10.1007/s12583-021-1482-3
    Kong, J. T., Xu, Z. J., Cheng, R. H., et al., 2024. Provenance of the Southeastern South China Block in the Late Triassic and Initiation of Paleo-Pacific Subduction: Evidence from Detrital Zircon U-Pb Geochronology. Journal of Earth Science, 35(5): 1426–1446. https://doi.org/10.1007/s12583-022-1694-1
    Kono, Y., Kenney-Benson, C., Hummer, D., et al., 2014. Ultralow Viscosity of Carbonate Melts at High Pressures. Nature Communications, 5: 5091. https://doi.org/10.1038/ncomms6091
    Kuang, Y. S., Wei, X., Hong, L. B., et al., 2012. Petrogenetic Evaluation of the Laohutai Basalts from North China Craton: Melting of a Two-Component Source during Lithospheric Thinning in the Late Cretaceous–Early Cenozoic. Lithos, 154: 68–82. https://doi.org/10.1016/j.lithos.2012.06.027
    Li, J., Niu, F. L., 2010. Seismic Anisotropy and Mantle Flow beneath NorthEast China Inferred from Regional Seismic Networks. Journal of Geophysical Research: Solid Earth, 115(B12): 2010JB007470. https://doi.org/10.1029/2010jb007470
    Li, S. G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4(1): 111–120. https://doi.org/10.1093/nsr/nww070
    Li, Z. J., Kreemer, C., 2021. Eastward Mantle Flow Field underneath East Asia Quantified by Combining Shear-Wave Splitting Orientations and Absolute Plate Motion Observations. Earth and Planetary Science Letters, 566: 116969. https://doi.org/10.1016/j.epsl.2021.116969
    Liu, S. A., Wang, Z. Z., Li, S. G., et al., 2016. Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 444: 169–178. https://doi.org/10.1016/j.epsl.2016.03.051
    Liu, S. A., Wu, H. C., Shen, S. Z., et al., 2017. Zinc Isotope Evidence for Intensive Magmatism Immediately before the End-Permian Mass Extinction. Geology, 45(4): 343–346. https://doi.org/10.1130/g38644.1
    Liu, S. A., Wu, T. H., Li, S. G., et al., 2022. Contrasting Fates of Subducting Carbon Related to Different Oceanic Slabs in East Asia. Geochimica et Cosmochimica Acta, 324: 156–173. https://doi.org/10.1016/j.gca.2022.03.009
    Liu, X., Zhao, D. P., Li, S. Z., et al., 2017. Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications. Earth and Planetary Science Letters, 464: 166–174. https://doi.org/10.1016/j.epsl.2017.02.024
    Long, M. D., Wirth, E. A., 2013. Mantle Flow in Subduction Systems: The Mantle Wedge Flow Field and Implications for Wedge Processes. Journal of Geophysical Research: Solid Earth, 118(2): 583–606. https://doi.org/10.1002/jgrb.50063
    Lu, S. M., Pei, F. P., Zhou, Q. J., et al., 2012. Origin of Late Mesozoic Alkaline Basalts and Nature of Lithospheric Mantle in Liaoyuan Area, Jilin Province. Earth Science, 37(3): 475–488 (in Chinese with English Abstract)
    Ma, Q., Xu, Y. G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473
    Magni, V., Király, Á., Lynner, C., et al., 2025. Mantle Flow in Subduction Systems and Its Effects on Surface Tectonics and Magmatism. Nature Reviews Earth & Environment, 6(1): 51–66. https://doi.org/10.1038/s43017-024-00612-3
    Mather, B. R., Müller, R. D., Seton, M., et al., 2020. Intraplate Volcanism Triggered by Bursts in Slab Flux. Sci. Adv. , 6(51): eabd0953. https://doi.org/10.1126/sciadv.abd0953
    Meng, Q. R., Zhou, Z. H., Zhu, R. X., et al., 2022. Cretaceous Basin Evolution in Northeast Asia: Tectonic Responses to the Paleo-Pacific Plate Subduction. National Science Review, 9(1): nwab088. https://doi.org/10.1093/nsr/nwab088
    Mullen, E. K., Weis, D., 2015. Evidence for Trench-Parallel Mantle Flow in the Northern Cascade Arc from Basalt Geochemistry. Earth and Planetary Science Letters, 414: 100–107. https://doi.org/10.1016/j.epsl.2015.01.010
    Müller, R. D., Zahirovic, S., Williams, S. E., et al., 2019. A Global Plate Model Including Lithospheric Deformation along Major Rifts and Orogens since the Triassic. Tectonics, 38(6): 1884–1907. https://doi.org/10.1029/2018tc005462
    Niu, Y. L., 2021. Lithosphere Thickness Controls the Extent of Mantle Melting, Depth of Melt Extraction and Basalt Compositions in all Tectonic Settings on Earth—A Review and New Perspectives. Earth-Science Reviews, 217: 103614. https://doi.org/10.1016/j.earscirev.2021.103614
    Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251–286. https://doi.org/10.1146/annurev.ea.23.050195.001343
    Peng, D. D., Liu, L. J., Wang, Y. Y., 2021. A Newly Discovered Late-Cretaceous East Asian Flat Slab Explains Its Unique Lithospheric Structure and Tectonics. Journal of Geophysical Research: Solid Earth, 126(10): e2021JB022103. https://doi.org/10.1029/2021jb022103
    Portnyagin, M., Hoernle, K., Avdeiko, G., et al., 2005. Transition from Arc to Oceanic Magmatism at the Kamchatka-Aleutian Junction. Geology, 33(1): 25. https://doi.org/10.1130/g20853.1
    Ramirez, F. D. C., Selway, K., Conrad, C. P., et al., 2022. Constraining Upper Mantle Viscosity Using Temperature and Water Content Inferred from Seismic and Magnetotelluric Data. Journal of Geophysical Research (Solid Earth), 127(8): e2021JB023824. https://doi.org/10.1029/2021jb02382410.1002/essoar.10509950.1
    Schellart, W. P., 2008. Subduction Zone Trench Migration: Slab Driven or Overriding-Plate-Driven? Physics of the Earth and Planetary Interiors, 170(1/2): 73–88. https://doi.org/10.1016/j.pepi.2008.07.040
    Schellart, W. P., 2010. Mount Etna-Iblean Volcanism Caused by Rollback-Induced Upper Mantle Upwelling around the Ionian Slab Edge: An Alternative to the Plume Model. Geology, 38(8): 691–694. https://doi.org/10.1130/g31037.1
    Schellart, W. P., Moresi, L., 2013. A New Driving Mechanism for Backarc Extension and Backarc Shortening through Slab Sinking Induced Toroidal and Poloidal Mantle Flow: Results from Dynamic Subduction Models with an Overriding Plate. Journal of Geophysical Research (Solid Earth), 118(6): 3221–3248. https://doi.org/10.1002/jgrb.50173
    Staudigel, H., Davies, G. R., Hart, S. R., et al., 1995. Large Scale Isotopic Sr, Nd and O Isotopic Anatomy of Altered Oceanic Crust: DSDP/ODP Sites 417/418. Earth and Planetary Science Letters, 130(1/2/3/4): 169–185. https://doi.org/10.1016/0012-821x(94)00263-x
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, J. Z., Zhang, Z. C., Allen, M. B., et al., 2024. Origin of Early Cretaceous Mafic Volcanic Rocks from the Erlian Basin West of the Great Xing'an Range of North China: Implications for the Tectono-Magmatic Evolution of East Asia. Geological Society of America Bulletin, 136(7/8): 3085–3102. https://doi.org/10.1130/b37068.1
    Tang, J., Wang, F., Wang, Y. N., et al., 2023. Age, Formation Mechanisms, Spatial Extent, and Geodynamic Effects of the Eastern and Northeastern Asian Big Mantle Wedges. Earth-Science Reviews, 237: 104324. https://doi.org/10.1016/j.earscirev.2023.104324
    Torii, Y., Yoshioka, S., 2007. Physical Conditions Producing Slab Stagnation: Constraints of the Clapeyron Slope, Mantle Viscosity, Trench Retreat, and Dip Angles. Tectonophysics, 445(3/4): 200–209. https://doi.org/10.1016/j.tecto.2007.08.003
    Turner, S., Hawkesworth, C., 1998. Using Geochemistry to Map Mantle Flow beneath the Lau Basin. Geology, 26(11): 1019. https://doi.org/10.1130/0091-7613(1998)0261019:ugtmmf>2.3.co;2 doi: 10.1130/0091-7613(1998)0261019:ugtmmf>2.3.co;2
    Verma, S. P., 2009. Continental Rift Setting for the Central Part of the Mexican Volcanic Belt: A Statistical Approach. The Open Geology Journal, 3(1): 8–29. https://doi.org/10.2174/1874262900903010008
    Wang, F., Xu, W. L., Xing, K. C., et al., 2019a. Final Closure of the Paleo-Asian Ocean and Onset of Subduction of Paleo-Pacific Ocean: Constraints from Early Mesozoic Magmatism in Central Southern Jilin Province, NE China. Journal of Geophysical Research: Solid Earth, 124(3): 2601–2622. https://doi.org/10.1029/2018jb016709
    Wang, F., Xu, W. L., Xing, K. C., et al., 2019b. Temporal Changes in the Subduction of the Paleo-Pacific Plate beneath Eurasia during the Late Mesozoic: Geochronological and Geochemical Evidence from Cretaceous Volcanic Rocks in Eastern NE China. Lithos, 326: 415–434. https://doi.org/10.1016/j.lithos.2018.12.035
    Wang, S. N., Yan, J., 2021. Coexisting Early Cretaceous Arc-Type and OIB-Type Mafic Magmatic Rocks in the Eastern Jiangnan Orogen, South China Block: Implications for Paleo-Pacific Plate Subduction. Lithos, 400: 106421. https://doi.org/10.1016/j.lithos.2021.106421
    Wang, Y. N., Xu, W. L., Wang, F., et al., 2022. Late Paleozoic–Mesozoic Tectonic Evolution of the Northeastern Asian Continental Margin Revealed by Sedimentary Formations and Fossil Accretionary Complexes. Earth-Science Reviews, 225: 103908. https://doi.org/10.1016/j.earscirev.2021.103908
    Wang, Z. S., Zhang, J. F., Zong, K. Q., et al., 2023. Plate Tectonics: The Stabilizer of Earth's Habitability. Journal of Earth Science, 34(6): 1645–1662. https://doi.org/10.1007/s12583-023-1864-9
    Wang, Z. Z., Liu, S. G., 2021. Evolution of Intraplate Alkaline to Tholeiitic Basalts via Interaction between Carbonated Melt and Lithospheric Mantle. Journal of Petrology, 62(4): egab025. https://doi.org/10.1093/petrology/egab025
    Wang, Z. Z., Liu, S. G., Liu, J. G., et al., 2017. Zinc Isotope Fractionation during Mantle Melting and Constraints on the Zn Isotope Composition of Earth's Upper Mantle. Geochimica et Cosmochimica Acta, 198: 151–167. https://doi.org/10.1016/j.gca.2016.11.014
    Wu, B. C., Wang, Y. M., Huang, J. S., 2022. Dynamics of the Subducted Izanagi-Pacific Plates since the Mesozoic and Its Implications for the Formation of Big Mantle Wedge beneath Eastern Asia. Frontiers in Earth Science, 10: 829163. https://doi.org/10.3389/feart.2022.829163
    Wu, J. T., Wu, J., 2019. Izanagi-Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953–957. https://doi.org/10.1130/g46778.1
    Xu, R., Liu, Y. S., Lambart, S., et al., 2022. Decoupled Zn-Sr-Nd Isotopic Composition of Continental Intraplate Basalts Caused by Two-Stage Melting Process. Geochimica et Cosmochimica Acta, 326: 234–252. https://doi.org/10.1016/j.gca.2022.03.014
    Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167–193. https://doi.org/10.1016/j.jseaes.2013.04.003
    Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Science China Earth Sciences, 61(7): 869–886. https://doi.org/10.1007/s11430-017-9192-y
    Xu, Y. G., Zhang, H. H., Qiu, H. N., et al., 2012. Oceanic Crust Components in Continental Basalts from Shuangliao, NorthEast China: Derived from the Mantle Transition Zone? Chemical Geology, 328: 168–184. https://doi.org/10.1016/j.chemgeo.2012.01.027
    Yang, T., Moresi, L., Gurnis, M., et al., 2019. Contrasted East Asia and South America Tectonics Driven by Deep Mantle Flow. Earth and Planetary Science Letters, 517: 106–116. https://doi.org/10.1016/j.epsl.2019.04.025
    Yang, W., Li, S. G., 2008. Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in Western Liaoning: Implications for Lithospheric Thinning of the North China Craton. Lithos, 102(1/2): 88–117. https://doi.org/10.1016/j.lithos.2007.09.018
    Yu, Y. Y., Zong, K. Q., Yuan, Y., et al., 2022. Crustal Contamination of the Mantle-Derived Liuyuan Basalts: Implications for the Permian Evolution of the Southern Central Asian Orogenic Belt. Journal of Earth Science, 33(5): 1081–1094. https://doi.org/10.1007/s12583-022-1706-1
    Zahirovic, S., Müller, R. D., Seton, M., et al., 2015. Tectonic Speed Limits from Plate Kinematic Reconstructions. Earth and Planetary Science Letters, 418: 40–52. https://doi.org/10.1016/j.epsl.2015.02.037
    Zhang, C., Ma, Q., Hong, L. B., et al., 2024. Bulk Rock and Olivine Chemistry and Isotopes of 106–58 Ma Basalts from Liaodong Peninsula and Its Adjacent Areas: Implications for Secular Evolution of the Big Mantle Wedge in Eastern China. Journal of Petrology, 65(7): egae071. https://doi.org/10.1093/petrology/egae071
    Zhang, H. F., Sun, M., Zhou, X. H., et al., 2003. Secular Evolution of the Lithosphere beneath the Eastern North China Craton: Evidence from Mesozoic Basalts and High-Mg Andesites. Geochimica et Cosmochimica Acta, 67(22): 4373–4387. https://doi.org/10.1016/s0016-7037(03)00377-6
    Zhang, H. H., Xu, Y. G., Ge, W. C., et al., 2006. Geochemistry of Late Mesozoic-Cenozoic Basalts in Yitong-Datun Area, Jilin Province and Its Implication. Acta Petrologica Sinica, 22(6): 1579–1596 (in Chinese with English Abstract)
    Zhao, D. P., Lei, J. S., Tang, R. Y., 2004. Origin of the Changbai Intraplate Volcanism in NorthEast China: Evidence from Seismic Tomography. Chinese Science Bulletin, 49(13): 1401–1408. https://doi.org/10.1360/04wd0125
    Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3/4): 197–206. https://doi.org/10.1016/j.pepi.2008.11.009
    Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565–1587. https://doi.org/10.1007/s11430-012-4516-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(290) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return