| Citation: | Si-Wen Zhang, Feng Wang, Ren-Yi Jia, Wen-Liang Xu, Yi-Ni Wang, De-Bin Yang, Hai-Hong Zhang. Trench-Perpendicular Mantle Flow Recorded by Late Mesozoic Intraplate Magmatism and Implications for the Formation of the Eastern Asian Big Mantle Wedge. Journal of Earth Science, 2025, 36(5): 1879-1891. doi: 10.1007/s12583-025-0220-7 |
The Paleo-Pacific Plate stagnated in the mantle transition zone beneath northeast Asia during the Late Mesozoic, resulting in the eastern Asian big mantle wedge (BMW). However, its formation mechanism remains unclear. Here, we analyzed elemental and isotopic compositions of 126–60 Ma intraplate basaltic rocks to map the mantle flow pattern and investigate the implications for the formation of the BMW. These rocks exhibit eastward an increase in Ba/Nb, Ba/La, 87Sr/86Sr, and 208Pb/204Pb ratios, while a decrease in Nb/Yb, Zr/Yb, Ta/Yb, and Nb/Nb* ratios, indicating mixing between the fertile mantle and the depleted mantle modified by slab material, implying the occurrence of trench-perpendicular mantle flow. The coeval mantle flow and formation of the BMW, the similar directions of mantle flow and Paleo-Pacific Plate subduction, and migration of basin depocenters indicate trench-perpendicular mantle flow was a key factor in the formation of the BMW. Moreover, these basaltic rocks have elevated δ66Zn values (0.22‰ to 0.52‰), indicating recycled carbonates have been added into their mantle source, which increased the mantle flow velocity. Combined with slab roll-back in the Late Mesozoic, it created the essential conditions for mantle flow to promote the formation of the eastern Asian BMW.
| Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1 016/s0377-0273(00)00182-7 doi: 10.1016/s0377-0273(00)00182-7 |
| Chen, Z. H., Schellart, W. P., Strak, V., et al., 2016. Does Subduction-Induced Mantle Flow Drive Backarc Extension? Earth and Planetary Science Letters, 441: 200–210. https://doi.org/10.1016/j.epsl.2016.02.027 |
| Dannberg, J., Eilon, Z., Faul, U., et al., 2017. The Importance of Grain Size to Mantle Dynamics and Seismological Observations. Geochemistry, Geophysics, Geosystems, 18(8): 3034–3061. https://doi.org/10.1002/2017gc006944 |
| DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189–202. https://doi.org/10.1016/0012-821x(81)90153-9 |
| Dong, L. L., Yang, Z. M., Song, M. C., 2023. Prolonged Mantle Modification beneath the North China Craton: Evidence from Contrasting Mafic Dykes in Jiaodong Peninsula. Journal of Earth Science, 34(4): 1150–1164. https://doi.org/10.1007/s1258 3-022-1737-7 doi: 10.1007/s12583-022-1737-7 |
| Dong, Y., Xiong, S., Wang, F., et al., 2023. Triggering of Episodic Back-Arc Extensions in the Northeast Asian Continental Margin by Deep Mantle Flow. Geology, 51(2): 193–198. https://doi.org/10.1130/g050724.1 |
| Duarte, J. C., Schellart, W. P., Cruden, A. R., 2013. Three-Dimensional Dynamic Laboratory Models of Subduction with an Overriding Plate and Variable Interplate Rheology. Geophysical Journal International, 195(1): 47–66. https://doi.org/10.1093/gji/ggt257 |
| Elsasser, W. M., 1971. Sea-Floor Spreading as Thermal Convection. Journal of Geophysical Research, 76(5): 1101–1112. https://doi.org/10.1029/jb076i005p01101 |
| Fang, W., Dai, L. Q., Zhao, Z. F., et al., 2024. Molybdenum Isotopic Evidence for the Initiation of a Big Mantle Wedge beneath Eastern Asia. Chemical Geology, 662: 122244. https://doi.org/10.1016/j.chemgeo.2024.122244 |
| Fukao, Y., Obayashi, M., Inoue, H., et al., 1992. Subducting Slabs Stagnant in the Mantle Transition Zone. Journal of Geophysical Research: Solid Earth, 97(B4): 4809–4822. https://doi.org/10.1029/91jb02749 |
| Fukao, Y., Obayashi, M., Nakakuki, T., 2009. Stagnant Slab: A Review. Annual Review of Earth and Planetary Sciences, 37: 19–46. https://doi.org/10.1146/annurev.earth.36.031207.124224 |
| Gaillard, F., Malki, M., Iacono-Marziano, G., et al., 2008. Carbonatite Melts and Electrical Conductivity in the Asthenosphere. Science, 322(5906): 1363–1365. https://doi.org/10.1126/science.1164446 |
| Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959–1975. https://doi.org/10.1016/s0016-7037(98)00121-5 |
| Gill, J., Hoernle, K., Todd, E., et al., 2021. Basalt Geochemistry and Mantle Flow during Early Backarc Basin Evolution: Havre Trough and Kermadec Arc, Southwest Pacific. Geochemistry, Geophysics, Geosystems, 22(2): e2020GC009339. https://doi.org/10.1029/2020gc009339 |
| Goes, S., Agrusta, R., van Hunen, J., et al., 2017. Subduction-Transition Zone Interaction: A Review. Geosphere, 13(3): 644–664. https://doi.org/10.1130/ges01476.1 |
| Guillaume, B., Funiciello, F., Faccenna, C., 2021. Interplays between Mantle Flow and Slab Pull at Subduction Zones in 3D. Journal of Geophysical Research (Solid Earth), 126(5): e2020JB021574. https://doi.org/10.1029/2020jb021574 |
| Guo, P. Y., Niu, Y. L., Sun, P., et al., 2020. Lithosphere Thickness Controls Continental Basalt Compositions: An Illustration Using Cenozoic Basalts from Eastern China. Geology, 48(2): 128–133. https://doi.org/10.1130/g46710.1 |
| Guo, Z. X., Yang, Y. T., 2023. Late Mesozoic Basin Evolution in NE China and Its Surrounding Areas, Mechanisms of the Continental-Scale Extensional Regime in East Asia during the Late Jurassic–Early Cretaceous. Earth-Science Reviews, 241: 104418. https://doi.org/10.1016/j.earscirev.2023.104418 |
| Hauff, F., Hoernle, K., Schmidt, A., 2003. Sr-Nd-Pb Composition of Mesozoic Pacific Oceanic Crust (Site 1149 and 801, ODP Leg 185): Implications for Alteration of Ocean Crust and the Input into the Izu-Bonin-Mariana Subduction System. Geochemistry, Geophysics, Geosystems, 4(8): e2022GL098308. https://doi.org/10.1029/2002gc000421 |
| Hoernle, K., Abt, D. L., Fischer, K. M., et al., 2008. Arc-Parallel Flow in the Mantle Wedge beneath Costa Rica and Nicaragua. Nature, 451(7182): 1094–1097. https://doi.org/10.1038/nature06550 |
| Hoernle, K., Tilton, G., Le Bas, M. J., et al., 2002. Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites: Mantle Recycling of Oceanic Crustal Carbonate. Contributions to Mineralogy and Petrology, 142(5): 520–542. https://doi.org/10.1007/s004100100308 |
| Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314. https://doi.org/10.1016/0012-821x(88)90132-x |
| Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219–229. https://doi.org/10.1038/385219a0 |
| Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research (Solid Earth), 111(B9): B09305. https://doi.org/10.1029/2005jb004066 |
| Huang, J., Liu, S. G., Gao, Y. J., et al., 2016. Copper and Zinc Isotope Systematics of Altered Oceanic Crust at IODP Site 1256 in the Eastern Equatorial Pacific. Journal of Geophysical Research (Solid Earth), 121(10): 7086–7100. https://doi.org/10.1002/2016jb013095 |
| Huang, Z. Y., Yuan, C., Zhang, Y. Y., et al., 2024. Influences of the Stagnant Pacific Slab beyond Its Westernmost Edge: Insights from the Cenozoic Alkaline Basalts in the Dariganga Volcanic Field, SE Mongolia. Journal of Geophysical Research: Solid Earth, 129(10): e2024JB028884. https://doi.org/10.1029/2024jb 028884 doi: 10.1029/2024jb028884 |
| Jiang, D. S., Xu, X. S., Erdmann, S., et al., 2024. Ba-Mg Isotopic Evidence from an OIB-Type Diabase for a Big Mantle Wedge beneath East Asia in the Early Cretaceous. Chemical Geology, 646: 121917. https://doi.org/10.1016/j.chemgeo.2023.121917 |
| Jin, Q. Z., Huang, J., Liu, S. C., et al., 2020. Magnesium and Zinc Isotope Evidence for Recycled Sediments and Oceanic Crust in the Mantle Sources of Continental Basalts from Eastern China. Lithos, 370: 105627. https://doi.org/10.1016/j.lithos.2020.105627 |
| Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120–180 Km Depth. Nature, 437(7059): 724–727. https://doi.org/10.1038/nature03971 |
| Khan, A., Faisal, S., Larson, K. P., et al., 2023. Geochemistry and in-situ U-Th/Pb Geochronology of the Jambil Meta-Carbonatites, Northern Pakistan: Implications on Petrogenesis and Tectonic Evolution. Journal of Earth Science, 34(1): 70–85. https://doi.org/10.1007/s12583-021-1482-3 |
| Kong, J. T., Xu, Z. J., Cheng, R. H., et al., 2024. Provenance of the Southeastern South China Block in the Late Triassic and Initiation of Paleo-Pacific Subduction: Evidence from Detrital Zircon U-Pb Geochronology. Journal of Earth Science, 35(5): 1426–1446. https://doi.org/10.1007/s12583-022-1694-1 |
| Kono, Y., Kenney-Benson, C., Hummer, D., et al., 2014. Ultralow Viscosity of Carbonate Melts at High Pressures. Nature Communications, 5: 5091. https://doi.org/10.1038/ncomms6091 |
| Kuang, Y. S., Wei, X., Hong, L. B., et al., 2012. Petrogenetic Evaluation of the Laohutai Basalts from North China Craton: Melting of a Two-Component Source during Lithospheric Thinning in the Late Cretaceous–Early Cenozoic. Lithos, 154: 68–82. https://doi.org/10.1016/j.lithos.2012.06.027 |
| Li, J., Niu, F. L., 2010. Seismic Anisotropy and Mantle Flow beneath NorthEast China Inferred from Regional Seismic Networks. Journal of Geophysical Research: Solid Earth, 115(B12): 2010JB007470. https://doi.org/10.1029/2010jb007470 |
| Li, S. G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4(1): 111–120. https://doi.org/10.1093/nsr/nww070 |
| Li, Z. J., Kreemer, C., 2021. Eastward Mantle Flow Field underneath East Asia Quantified by Combining Shear-Wave Splitting Orientations and Absolute Plate Motion Observations. Earth and Planetary Science Letters, 566: 116969. https://doi.org/10.1016/j.epsl.2021.116969 |
| Liu, S. A., Wang, Z. Z., Li, S. G., et al., 2016. Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 444: 169–178. https://doi.org/10.1016/j.epsl.2016.03.051 |
| Liu, S. A., Wu, H. C., Shen, S. Z., et al., 2017. Zinc Isotope Evidence for Intensive Magmatism Immediately before the End-Permian Mass Extinction. Geology, 45(4): 343–346. https://doi.org/10.1130/g38644.1 |
| Liu, S. A., Wu, T. H., Li, S. G., et al., 2022. Contrasting Fates of Subducting Carbon Related to Different Oceanic Slabs in East Asia. Geochimica et Cosmochimica Acta, 324: 156–173. https://doi.org/10.1016/j.gca.2022.03.009 |
| Liu, X., Zhao, D. P., Li, S. Z., et al., 2017. Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications. Earth and Planetary Science Letters, 464: 166–174. https://doi.org/10.1016/j.epsl.2017.02.024 |
| Long, M. D., Wirth, E. A., 2013. Mantle Flow in Subduction Systems: The Mantle Wedge Flow Field and Implications for Wedge Processes. Journal of Geophysical Research: Solid Earth, 118(2): 583–606. https://doi.org/10.1002/jgrb.50063 |
| Lu, S. M., Pei, F. P., Zhou, Q. J., et al., 2012. Origin of Late Mesozoic Alkaline Basalts and Nature of Lithospheric Mantle in Liaoyuan Area, Jilin Province. Earth Science, 37(3): 475–488 (in Chinese with English Abstract) |
| Ma, Q., Xu, Y. G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473 |
| Magni, V., Király, Á., Lynner, C., et al., 2025. Mantle Flow in Subduction Systems and Its Effects on Surface Tectonics and Magmatism. Nature Reviews Earth & Environment, 6(1): 51–66. https://doi.org/10.1038/s43017-024-00612-3 |
| Mather, B. R., Müller, R. D., Seton, M., et al., 2020. Intraplate Volcanism Triggered by Bursts in Slab Flux. Sci. Adv. , 6(51): eabd0953. https://doi.org/10.1126/sciadv.abd0953 |
| Meng, Q. R., Zhou, Z. H., Zhu, R. X., et al., 2022. Cretaceous Basin Evolution in Northeast Asia: Tectonic Responses to the Paleo-Pacific Plate Subduction. National Science Review, 9(1): nwab088. https://doi.org/10.1093/nsr/nwab088 |
| Mullen, E. K., Weis, D., 2015. Evidence for Trench-Parallel Mantle Flow in the Northern Cascade Arc from Basalt Geochemistry. Earth and Planetary Science Letters, 414: 100–107. https://doi.org/10.1016/j.epsl.2015.01.010 |
| Müller, R. D., Zahirovic, S., Williams, S. E., et al., 2019. A Global Plate Model Including Lithospheric Deformation along Major Rifts and Orogens since the Triassic. Tectonics, 38(6): 1884–1907. https://doi.org/10.1029/2018tc005462 |
| Niu, Y. L., 2021. Lithosphere Thickness Controls the Extent of Mantle Melting, Depth of Melt Extraction and Basalt Compositions in all Tectonic Settings on Earth—A Review and New Perspectives. Earth-Science Reviews, 217: 103614. https://doi.org/10.1016/j.earscirev.2021.103614 |
| Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251–286. https://doi.org/10.1146/annurev.ea.23.050195.001343 |
| Peng, D. D., Liu, L. J., Wang, Y. Y., 2021. A Newly Discovered Late-Cretaceous East Asian Flat Slab Explains Its Unique Lithospheric Structure and Tectonics. Journal of Geophysical Research: Solid Earth, 126(10): e2021JB022103. https://doi.org/10.1029/2021jb022103 |
| Portnyagin, M., Hoernle, K., Avdeiko, G., et al., 2005. Transition from Arc to Oceanic Magmatism at the Kamchatka-Aleutian Junction. Geology, 33(1): 25. https://doi.org/10.1130/g20853.1 |
| Ramirez, F. D. C., Selway, K., Conrad, C. P., et al., 2022. Constraining Upper Mantle Viscosity Using Temperature and Water Content Inferred from Seismic and Magnetotelluric Data. Journal of Geophysical Research (Solid Earth), 127(8): e2021JB023824. https://doi.org/10.1029/2021jb02382410.1002/essoar.10509950.1 |
| Schellart, W. P., 2008. Subduction Zone Trench Migration: Slab Driven or Overriding-Plate-Driven? Physics of the Earth and Planetary Interiors, 170(1/2): 73–88. https://doi.org/10.1016/j.pepi.2008.07.040 |
| Schellart, W. P., 2010. Mount Etna-Iblean Volcanism Caused by Rollback-Induced Upper Mantle Upwelling around the Ionian Slab Edge: An Alternative to the Plume Model. Geology, 38(8): 691–694. https://doi.org/10.1130/g31037.1 |
| Schellart, W. P., Moresi, L., 2013. A New Driving Mechanism for Backarc Extension and Backarc Shortening through Slab Sinking Induced Toroidal and Poloidal Mantle Flow: Results from Dynamic Subduction Models with an Overriding Plate. Journal of Geophysical Research (Solid Earth), 118(6): 3221–3248. https://doi.org/10.1002/jgrb.50173 |
| Staudigel, H., Davies, G. R., Hart, S. R., et al., 1995. Large Scale Isotopic Sr, Nd and O Isotopic Anatomy of Altered Oceanic Crust: DSDP/ODP Sites 417/418. Earth and Planetary Science Letters, 130(1/2/3/4): 169–185. https://doi.org/10.1016/0012-821x(94)00263-x |
| Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| Tang, J. Z., Zhang, Z. C., Allen, M. B., et al., 2024. Origin of Early Cretaceous Mafic Volcanic Rocks from the Erlian Basin West of the Great Xing'an Range of North China: Implications for the Tectono-Magmatic Evolution of East Asia. Geological Society of America Bulletin, 136(7/8): 3085–3102. https://doi.org/10.1130/b37068.1 |
| Tang, J., Wang, F., Wang, Y. N., et al., 2023. Age, Formation Mechanisms, Spatial Extent, and Geodynamic Effects of the Eastern and Northeastern Asian Big Mantle Wedges. Earth-Science Reviews, 237: 104324. https://doi.org/10.1016/j.earscirev.2023.104324 |
| Torii, Y., Yoshioka, S., 2007. Physical Conditions Producing Slab Stagnation: Constraints of the Clapeyron Slope, Mantle Viscosity, Trench Retreat, and Dip Angles. Tectonophysics, 445(3/4): 200–209. https://doi.org/10.1016/j.tecto.2007.08.003 |
| Turner, S., Hawkesworth, C., 1998. Using Geochemistry to Map Mantle Flow beneath the Lau Basin. Geology, 26(11): 1019. https://doi.org/10.1130/0091-7613(1998)0261019:ugtmmf>2.3.co;2 doi: 10.1130/0091-7613(1998)0261019:ugtmmf>2.3.co;2 |
| Verma, S. P., 2009. Continental Rift Setting for the Central Part of the Mexican Volcanic Belt: A Statistical Approach. The Open Geology Journal, 3(1): 8–29. https://doi.org/10.2174/1874262900903010008 |
| Wang, F., Xu, W. L., Xing, K. C., et al., 2019a. Final Closure of the Paleo-Asian Ocean and Onset of Subduction of Paleo-Pacific Ocean: Constraints from Early Mesozoic Magmatism in Central Southern Jilin Province, NE China. Journal of Geophysical Research: Solid Earth, 124(3): 2601–2622. https://doi.org/10.1029/2018jb016709 |
| Wang, F., Xu, W. L., Xing, K. C., et al., 2019b. Temporal Changes in the Subduction of the Paleo-Pacific Plate beneath Eurasia during the Late Mesozoic: Geochronological and Geochemical Evidence from Cretaceous Volcanic Rocks in Eastern NE China. Lithos, 326: 415–434. https://doi.org/10.1016/j.lithos.2018.12.035 |
| Wang, S. N., Yan, J., 2021. Coexisting Early Cretaceous Arc-Type and OIB-Type Mafic Magmatic Rocks in the Eastern Jiangnan Orogen, South China Block: Implications for Paleo-Pacific Plate Subduction. Lithos, 400: 106421. https://doi.org/10.1016/j.lithos.2021.106421 |
| Wang, Y. N., Xu, W. L., Wang, F., et al., 2022. Late Paleozoic–Mesozoic Tectonic Evolution of the Northeastern Asian Continental Margin Revealed by Sedimentary Formations and Fossil Accretionary Complexes. Earth-Science Reviews, 225: 103908. https://doi.org/10.1016/j.earscirev.2021.103908 |
| Wang, Z. S., Zhang, J. F., Zong, K. Q., et al., 2023. Plate Tectonics: The Stabilizer of Earth's Habitability. Journal of Earth Science, 34(6): 1645–1662. https://doi.org/10.1007/s12583-023-1864-9 |
| Wang, Z. Z., Liu, S. G., 2021. Evolution of Intraplate Alkaline to Tholeiitic Basalts via Interaction between Carbonated Melt and Lithospheric Mantle. Journal of Petrology, 62(4): egab025. https://doi.org/10.1093/petrology/egab025 |
| Wang, Z. Z., Liu, S. G., Liu, J. G., et al., 2017. Zinc Isotope Fractionation during Mantle Melting and Constraints on the Zn Isotope Composition of Earth's Upper Mantle. Geochimica et Cosmochimica Acta, 198: 151–167. https://doi.org/10.1016/j.gca.2016.11.014 |
| Wu, B. C., Wang, Y. M., Huang, J. S., 2022. Dynamics of the Subducted Izanagi-Pacific Plates since the Mesozoic and Its Implications for the Formation of Big Mantle Wedge beneath Eastern Asia. Frontiers in Earth Science, 10: 829163. https://doi.org/10.3389/feart.2022.829163 |
| Wu, J. T., Wu, J., 2019. Izanagi-Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953–957. https://doi.org/10.1130/g46778.1 |
| Xu, R., Liu, Y. S., Lambart, S., et al., 2022. Decoupled Zn-Sr-Nd Isotopic Composition of Continental Intraplate Basalts Caused by Two-Stage Melting Process. Geochimica et Cosmochimica Acta, 326: 234–252. https://doi.org/10.1016/j.gca.2022.03.014 |
| Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167–193. https://doi.org/10.1016/j.jseaes.2013.04.003 |
| Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Science China Earth Sciences, 61(7): 869–886. https://doi.org/10.1007/s11430-017-9192-y |
| Xu, Y. G., Zhang, H. H., Qiu, H. N., et al., 2012. Oceanic Crust Components in Continental Basalts from Shuangliao, NorthEast China: Derived from the Mantle Transition Zone? Chemical Geology, 328: 168–184. https://doi.org/10.1016/j.chemgeo.2012.01.027 |
| Yang, T., Moresi, L., Gurnis, M., et al., 2019. Contrasted East Asia and South America Tectonics Driven by Deep Mantle Flow. Earth and Planetary Science Letters, 517: 106–116. https://doi.org/10.1016/j.epsl.2019.04.025 |
| Yang, W., Li, S. G., 2008. Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in Western Liaoning: Implications for Lithospheric Thinning of the North China Craton. Lithos, 102(1/2): 88–117. https://doi.org/10.1016/j.lithos.2007.09.018 |
| Yu, Y. Y., Zong, K. Q., Yuan, Y., et al., 2022. Crustal Contamination of the Mantle-Derived Liuyuan Basalts: Implications for the Permian Evolution of the Southern Central Asian Orogenic Belt. Journal of Earth Science, 33(5): 1081–1094. https://doi.org/10.1007/s12583-022-1706-1 |
| Zahirovic, S., Müller, R. D., Seton, M., et al., 2015. Tectonic Speed Limits from Plate Kinematic Reconstructions. Earth and Planetary Science Letters, 418: 40–52. https://doi.org/10.1016/j.epsl.2015.02.037 |
| Zhang, C., Ma, Q., Hong, L. B., et al., 2024. Bulk Rock and Olivine Chemistry and Isotopes of 106–58 Ma Basalts from Liaodong Peninsula and Its Adjacent Areas: Implications for Secular Evolution of the Big Mantle Wedge in Eastern China. Journal of Petrology, 65(7): egae071. https://doi.org/10.1093/petrology/egae071 |
| Zhang, H. F., Sun, M., Zhou, X. H., et al., 2003. Secular Evolution of the Lithosphere beneath the Eastern North China Craton: Evidence from Mesozoic Basalts and High-Mg Andesites. Geochimica et Cosmochimica Acta, 67(22): 4373–4387. https://doi.org/10.1016/s0016-7037(03)00377-6 |
| Zhang, H. H., Xu, Y. G., Ge, W. C., et al., 2006. Geochemistry of Late Mesozoic-Cenozoic Basalts in Yitong-Datun Area, Jilin Province and Its Implication. Acta Petrologica Sinica, 22(6): 1579–1596 (in Chinese with English Abstract) |
| Zhao, D. P., Lei, J. S., Tang, R. Y., 2004. Origin of the Changbai Intraplate Volcanism in NorthEast China: Evidence from Seismic Tomography. Chinese Science Bulletin, 49(13): 1401–1408. https://doi.org/10.1360/04wd0125 |
| Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3/4): 197–206. https://doi.org/10.1016/j.pepi.2008.11.009 |
| Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565–1587. https://doi.org/10.1007/s11430-012-4516-y |