Citation: | Jiren Xu, Zhixin Zhao. Continental Dynamics in High Tibetan Plateau: Normal Faulting Type Earthquake Activities and Mechanisms. Journal of Earth Science, 2009, 20(2): 484-492. doi: 10.1007/s12583-009-0040-1 |
Various earthquake fault types were analyzed for this study on the crust movement in the high region of the Tibetan plateau by analyzing mechanism solutions and stress fields. The results show that a lot of normal faulting type earthquakes are concentrated in the central High Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of normal faulting earthquakes are almost in an N-S direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extensions probably are an eastward extensional motion, being mainly a tectonic active regime in the plateau altitudes. The tensional stress in the E-W or NWW-SEE direction predominates earthquake occurrences in the normal event region of the central plateau. The eastward extensional motion in the high Tibetan plateau is attributable to the gravitational collapse of the high plateau and the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. Extensional motions from the relaxation of the topography and/or gravitational collapse in the high plateau hardly occurred along the N-S direction. The obstruction for the plateau to move eastward is rather weak.
Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. J. Geophys. Res. , 91: 13803–13872 doi: 10.1029/JB091iB14p13803 |
Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia. Geophys. Res. Lett. , 20(10): 895–898 doi: 10.1029/93GL00128 |
Blisniuk, P. M., Hacker, B. R., Glodny, J., et al., 2001. Normal Faulting in Central Tibet since at Least 13.5 Myr Ago. Nature, 412(6847): 628–632 doi: 10.1038/35088045 |
Bourjot, L., Romanowicz, B., 1992. Crust and Upper Mantle Tomography in Tibet Using Surface Waves. Geophys. Res. Lett. , 19(9): 881–884 doi: 10.1029/92GL00261 |
Chen, Z., Burchfiel, B. C., Liu, R., et al., 2000. Global Positioning System Measurements from Eastern Tibet and Their Implications for India/Eurasia Intercontinental Deformation. J. Geophys. Res. , 105(B7): 16215–16227 doi: 10.1029/2000JB900092 |
Deway, J. F., Bird, J. M., 1970. Mountain Belts and New Global Tectonics. J. Geophys. Res. , 75: 2625–2647 doi: 10.1029/JB075i014p02625 |
Dewey, J. F., 1988. Extensional Collapse of Orogens. Tectonics, 7(6): 1123–1139 doi: 10.1029/TC007i006p01123 |
Hancock, P. L., Bevan, T. G., 1987. Brittle Modes of Foreland Extension. In: Coward, M. P., Dewey, J. F., Hancock, P. L., eds., Continental Extensional Tectonics. Geological Society Special Publications, 28:127–137 |
Han, T. L., 1981. Relationship of the Active Structural System to Geothermal Activity in Southern Xizang (Tibet), in Himalayan Geology. Geological Publishing House, Beijing. 45–58 (in Chinese) |
Klemperer, S. L., 2006. Crustal Flow in Tibet: Geophysical Evidence for the Physical State of Tibetan Lithosphere, and Inferred Patterns of Active Flow. In: Law, R. D., Searle, M. P., Godin, L., eds., Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol. Soc. Lond. Special Publications, 268: 39–70 |
Lave, J., Avouac, J. P., Lacassin, R., et al., 1997. Seismic Anisotropy beneath Tibet—Evidence for Eastward Extrusion of the Tibetan Lithosphere. Earth Planet. Sci. Lett. , 140(1–4): 83–96 http://web.gps.caltech.edu/~avouac/publications/LaveAvouacEPS1996.pdf |
Li, Y. L., Wang, C. S., Yi, H. S., et al., 2001. Characteristics of the Shuanghu Graben and Cenozoic Extension in the Northern Tibet. Science in China (Series D), 44(Suppl. ): 284–291 http://earth.scichina.com:8080/sciDe/fileup/PDF/01yd0284.pdf |
Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419–426 doi: 10.1126/science.189.4201.419 |
Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. J. Geophys. Res. , 83(B11): 5361–5375 doi: 10.1029/JB083iB11p05361 |
Molnar, P., 1989. The Geologic Evolution of the Tibetan Plateau. Ame. Sci. , 77(4): 350–360 http://www.indiaenvironmentportal.org.in/files/Science%2022%20Aug%202008.pdf |
Molnar, P., 1990. A Review of the Seismicity and the Rates of Active Underthrusting and Deformation at the Himalaya. Journal of Himalayan Geology, 1: 131–154 http://www.researchgate.net/publication/303918933_A_review_of_the_seismicity_and_the_rate_of_active_underthrusting_and_deformation_at_the_Himalaya |
Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357–396 doi: 10.1029/93RG02030 |
Ni, J., York, J. E., 1978. Late Cenozoic Tectonics of the Tibetan Plateau. J. Geophys. Res. , 83: 5377–5384 doi: 10.1029/JB083iB11p05377 |
Robert, S., Yeats, K. S., Clarence, R. A., 1997. The Geology of Earthquakes. Oxford University Press, Oxford. 256–257 |
Tapponnier, P., 1990. The Ailao Shan-Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 343(6257): 431–437 doi: 10.1038/343431a0 |
Wu, H. Z., Ye, P. S., Hu, D. G., 2003. Evolvement for Crustal Deformation and Tectonic Physiognomy. Geological Publishing House, Beijing. 1–292 (in Chinese) |
Xu, J. R., Zhao, Z. X., Ishikawa, Y., et al., 1988. Properties of the Stress Field in and around West China Derived from Earthquake Mechanism Solutions. Bulletin of the Disaster Prevention Research Institutey, 38(2): 49–78 http://core.ac.uk/download/pdf/39254812.pdf |
Xu, J. R., Yoshiteru, K., 2002. Geometry of Slab, Intraslab Stress Field and Its Tectonic Implication in the Nankai Trough, Japan. Earth, Planes and Space, 54(7): 733–742 doi: 10.1186/BF03351726 |
Xu, J. R., Oike, K., 1995. Stress Characteristics in the Southern Segment of the North-South Seismic Belt. Acta Sesimologica Sinica, 17: 31–40 (in Chinese with English Abstract) |
Xu, J. R., Zhao, Z. X., Kono, Y., et al., 2003. Regional Characteristics of Stress Field and Its Dynamics in and around the Nankai Trough, Japan. Chinese Journal of Geophysics, 46(4): 488–494 (in Chinese with English Abstract) http://www.onacademic.com/detail/journal_1000039223479210_1df8.html |
Yeats, R. S., Lillie, R. J., 1991. Contemporary Tectonics of the Himalayan Frontal Fault System: Folds, Blind Thrusts, and the 1905 Kangra Earthquake. J. Structural Geology, 13(2): 215–225 doi: 10.1016/0191-8141(91)90068-T |
Zhang, Y., Tanimoto, T., 1993. High Resolution Global Upper Mantle Structure and Plate Tectonics. J. Geophys. Res. , 98(B6): 9793–9823 doi: 10.1029/93JB00148 |
Zhang, Y., 2000. Three Dimensional Upper Mantle Structure beneath East Asia and Its Tectonic Implications. In: Martin, E. J. F., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series, 27: 11–23 |
Zhao, Z. X., Oike, K., Matsumura, K., et al., 1990. Stress Field in the Continental Part of China Derived from Temporal Variations of Seismic Activity. Tectonophysics, 178(2–4): 357–372 |
Zhao, Z. X., Xu, J. R., 2009. Compressive Tectonics around the Tibetan Plateau Edges. Journal of Earth Science, 20(2): 477–483 doi: 10.1007/s12583-009-0039-7 |
Zhou, R., Grand, S. P., Tajima, F., et al., 1996. High Velocity Zone beneath the Southern Tibetan Plateau from P-Wave Differential Travel Time Data. Geophys. Res. Lett. , 23(1): 25–28 doi: 10.1029/95GL03607 |