Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 5
Oct 2009
Turn off MathJax
Article Contents
Teng Ma, Yanxin Wang, Qinghai Guo, Chunmiao Yan, Rui Ma, Zheng Huang. Hydrochemical and Isotopic Evidence of Origin of Thermal Karst Water at Taiyuan, Northern China. Journal of Earth Science, 2009, 20(5): 879-879. doi: 10.1007/s12583-009-0074-4
Citation: Teng Ma, Yanxin Wang, Qinghai Guo, Chunmiao Yan, Rui Ma, Zheng Huang. Hydrochemical and Isotopic Evidence of Origin of Thermal Karst Water at Taiyuan, Northern China. Journal of Earth Science, 2009, 20(5): 879-879. doi: 10.1007/s12583-009-0074-4

Hydrochemical and Isotopic Evidence of Origin of Thermal Karst Water at Taiyuan, Northern China

doi: 10.1007/s12583-009-0074-4
Funds:

the National Natural Science Foundation of China aaa

the National Natural Science Foundation of China aaa

the China-Russia International Cooperation and Exchange Project of NSFC-RFBR 40711120189

Program for New Century Excellent Talents in University NCET-07-0773

the Aid Project of the Ministry of Science and Technology of China to Developing Countries 2008041012

More Information
  • Corresponding author: Wang Yanxin, yx.wang@cug.edu.cn
  • Received Date: 02 Dec 2008
  • Accepted Date: 06 Mar 2009
  • Thermal karst groundwaters with temperatures ranging from 32.8 to 62.5 ℃ were found at Taiyuan (太原) City, the capital of Shanxi (山西) Province. To identify the origin of the thermal groundwater, the following tracers were used in this study: δD, δ18O, 4He, 3He/4He, and major chemical constituents in water. Hydrochemical and isotopic data indicate that the thermal groundwaters in the basin area are a mixture of thermal waters from the West Mountain and those from the East Mountain. Furthermore, the 4He and 4Heexc concentrations of the thermal groundwater samples are usually lower than those of the cold groundwater samples, and there is an evidently negative correlation between the temperature and the 4He concentration in thermal groundwaters from the West Mountain and the basin, which means that with the increase in temperature, the He concentration increases in the vapor phase and decreases in the aqueous phase. In the plot of 3He/4He vs. 4He/20Ne of all water samples: air, crust, and mantle, all thermal groundwater samples are distributed near the line between the point of air and that of crust, suggesting that atmospheric and crustal helium is the main source for that in thermal groundwaters. In other words, there are no mantle-derived fluids mixed in the thermal groundwaters.

     

  • loading
  • Andrews, J. N., 1985. The Isotopic Composition of Radiogenic Helium and Its Use to Study Groundwater Movement in Confined Aquifers. Chemical Geology, 49(1–3): 339–351 http://www.onacademic.com/detail/journal_1000035296421210_87a5.html
    Ballentine, C. J., Burnard, P., 2002. Production, Release and Transport of Noble Gases in the Continental Crust. Reviews in Mineralogy and Geochemistry, 47: 481–538 doi: 10.2138/rmg.2002.47.12
    Bottomley, D. J., Ross, J. D., Clarke, W. B., 1984. Helium and Neon Isotope Geochemistry of Some Ground Waters from the Canadian Precambrian Shield. Geochimica et Cosmochimica Acta, 48(10): 1973–1985 doi: 10.1016/0016-7037(84)90379-X
    Castro, M. C., Stute, M., Schlosser, P., 2000. Comparison of 4He Ages and 14C Ages in Simple Aquifer Systems: Implications for Groundwater Flow and Chronologies. Applied Geochemistry, 15(8): 1137–1167 doi: 10.1016/S0883-2927(99)00113-4
    Chen, M., Wang, J., Deng, X., 1996. The Map of Geothermal System Types in China and Its Brief Explanation. Scientia Geologica Sinica, 31(2): 114–121 (in Chinese with English Abstract)
    Davis, S., DeWiest, R. J., 1966. Hydrogeology. Wiley, New York. 463
    Heaton, T. H. E., Vogel, J. C., 1981. Excess Air in Groundwater. Journal of Hydrology, 50(1–4): 201–216 http://www.sciencedirect.com/science/article/pii/0022169481900706
    Hou, Y. S., 2002. Research on the Geothermal Resources of Border Mount Fracture Zone in Taiyuan Region. Coal Geology of China, 14(4): 38–42 (in Chinese with English Abstract)
    Justin, T. K., David, R. H., 2003. Helium Isotope Studies in the Mojave Desert, California: Implications for Groundwater Chronology and Regional Seismicity. Chemical Geology, 202(1–2): 95–113 http://www.mojavewater.org/files/heliumisotopestudiesinthemojavedesertca-implicationsforgroundwaterchronologyandreg.pdf
    Kennedy, B. M., van Soest, M. C., 2006. A Helium Isotope Perspective on the Dixie Valley, Nevada, Hydrothermal System. Geothermics, 35(1): 26–43 doi: 10.1016/j.geothermics.2005.09.004
    Kraynov, S. R., Ryzhenko, B. N., Shvets, V. M., et al., 2004. Geochemistry of Grund Water: Theoretical, Applied and Environmental Aspects. Nauka, Moscow. 374–376
    Lupton, J. E., 1983. Terrestrial Inert Gases: Isotope Tracer Studies and Clues to Primordial Components in the Mantle. Annual Reviews in Earth and Planetary Sciences, 11: 371–414 doi: 10.1146/annurev.ea.11.050183.002103
    Sano, Y., Wakita, H., 1988. Precise Measurement of Helium Isotopes in Terrestrial Gases. Bulletin of the Chemical Society of Japan, 61: 1153–1157 doi: 10.1246/bcsj.61.1153
    Stute, M., Sonntag, C. D., Schlosser, P., et al., 1992. Helium in Deep Circulating Groundwater in the Great Hungarian Plain: Flow Dynamics and Crustal and Mantle Helium Fluxes. Geochimica et Cosmochimica Acta, 56(5): 2051–2067 doi: 10.1016/0016-7037(92)90329-H
    Tetsuya, Y., Shun, I. N., Hiroshi, W., 1999. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1–2): 99–107 http://csl.isc.irk.ru/BD/FulSt/00001886.pdf
    Torgersen, T., Drenjard, S., Stute, M., et al., 1995. Mantle Helium in Ground Waters of the Eastern North America: Time and Space Constraints on Sources. Geology, 23: 675–678 doi: 10.1130/0091-7613(1995)023<0675:MHIGWO>2.3.CO;2
    Torgersen, T., Ivey, G. N., 1985. Helium Accumulation in Groundwater Ⅱ: A Model for the Accumulation of the Crustal 4He Degassing Flux. Geochimica et Cosmochimica Acta, 49(11): 2445–2452 doi: 10.1016/0016-7037(85)90244-3
    Yan, S. L., Wang, R. F., Gan, Y. Q., 2003. Geochemistry of Thermal Groundwaters at Shentanggou, Taiyuan, China. In: Wang, Y. X., ed., Proceeding of the International Symposium on Water Resources and the Urban Environment. China Environmental Science Press, Beijing. 137–141
    Zuber, A., Weise, S. M., Motyka, J., 2004. Age and Flow Pattern of Groundwater in a Jurassic Limestone Aquifer and Related Tertiary Sands Derived from Combined Isotope, Noble Gas and Chemical Data. Journal of Hydrology, 286(1–4): 87–112 http://www.sciencedirect.com/science/article/pii/S0022169403003639
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(822) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return