Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 6
Dec 2009
Turn off MathJax
Article Contents
Detain Yan, Liqin Zhang, Shuangjian Li. Ce anomalies of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Journal of Earth Science, 2009, 20(6): 941-948. doi: 10.1007/s12583-009-0087-z
Citation: Detain Yan, Liqin Zhang, Shuangjian Li. Ce anomalies of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Journal of Earth Science, 2009, 20(6): 941-948. doi: 10.1007/s12583-009-0087-z

Ce anomalies of the Yangtze Region, South China, through the Ordovician and Silurian Transition

doi: 10.1007/s12583-009-0087-z
Funds:

the National Natural Science Foundation of China 40903032

the Research Foundation for Outstanding Young Teachers, China University of Geosciences (Wuhan) 

Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences BGEGF200810

More Information
  • Systematic Ce anomalies for whole-rock have been obtained from the shale-dominated, continuous, and pelagic sedimentary sequences spanning the Ordovician/Silurian (O/S) boundary at the Tieshui (铁水) of Xiushan (秀山), Chongqing (重庆), South China. Ce anomalies across the O/S boundary are recognized in three intervals, Wufeng (五峰), Guanyinqiao (观音桥) and Longmaxi (龙马溪). The calculated Ce/Ce* values of Wufeng Formation range from 0.84 to 0.96 (avg. 0.90). In the Guanyinqiao Formation, the values of calculated Ce/Ce* range from 0.73 to 0.85 (avg. 0.79). The Ce/Ce* values of uppermost Longmaxi Formation range from 0.87 to 0.96 (avg. 0.91). All along the section, the magnitude of the Ce anomaly is always negative, but is more significant in the Guanyinqiao Formation. The relatively higher Ce/Ce* values in the Wufeng and Longmaxi shales are likely to be due to the sediments deposited under rather reducing conditions. The Ce anomaly apparently does play some regular roles in the anoxic events that accompany prominent mass extinctions, and this work provides new data of critical importance for constraining models on the end-Ordovician anoxic events and mass extinctions.

     

  • loading
  • Byrne, R. H., Kim, K. H., 1990. Rare Earth Element Scavenging in Seawater. Geochim. Cosmochim. Acta, 54(10): 2645–2656 doi: 10.1016/0016-7037(90)90002-3
    Catherine, G., Christophe, L. C., 2002. Variations in Ce Anomalies of Conodonts through the Frasnian/Famennian Boundary of Poland (Kowala-Holy Cross Mountains): Implications for the Redox State of Seawater and Biodiversity. Palaeogeogr., Palaeoclimatol., Palaeoecol. , 181(1–3): 299–311
    Chen, X., Xiao, C., Chen, H., 1987. Wufengian (Ashgillian) Graptolite Faunal Differentiation and Anoxic Environment in South China. Acta Palaeontologica Sinica, 26(3): 326–344 (in Chinese with English Abstract)
    Chen, X., Rong, J., Fan, J., et al., 2000. Global Correlation of Biozones across the Ordovician-Silurian Boundary. Acta Palaeontologica Sinica, 39(1): 100–114 (in Chinese with English Abstract)
    de Baar, H. J. W., Bacon, M. P., Brewer, P. G., 1985. Rare Earth Elements in the Pacific and Atlantic Oceans. Geochim. Cosmochim. Acta, 49: 1943–1959 doi: 10.1016/0016-7037(85)90089-4
    de Baar, H. J. W., German, C. R., Elderfield, H., et al., 1988. Rare Earth Element Distribution in Anoxic Waters of the Carioca Trench. Geochim. Cosmochim. Acta, 52: 1203–1219 doi: 10.1016/0016-7037(88)90275-X
    Desprairies, A., Courtois, C., 1980. Relation Entre la Composition des Smectites d Alteration Sous-Marine et Leur Cortege de Terres Rares. Earth Planet. Sci. Lett. , 48(1): 124–130 doi: 10.1016/0012-821X(80)90175-2
    Elderfield, H., Greaces, M. J., 1982. The Rare Earth Elements in Seawater. Nature, 296: 214–219 doi: 10.1038/296214a0
    German, C. R., Elderfield, H., 1989. Rare Earth Elements in Saanich Inlet, British Columbia: A Seasonally Anoxic Basin. Geochim. Cosmochim. Acta, 53: 2561–2571 doi: 10.1016/0016-7037(89)90128-2
    German, C. R., Elderfield, H., 1990. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 5(5): 823–833 doi: 10.1029/PA005i005p00823
    German, C. R., Holliday, B. P., Elderfield, H., 1991. Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea. Geochim. Cosmochim. Acta, 55(12): 3533–3558
    Goldberg, E. D., Koide, M., Schmitt, R. A., et al., 1963. Rare-Earth Distributions in the Marine Environment. J. Geophys. Res. , 68(14): 4209–4217 doi: 10.1029/JZ068i014p04209
    Hallam, A., 1989. The Case for Sea-Level Change as a Dominant Causal Factor in Mass Extinction of Marine Invertebrates. Philos. Trans. R. Sci. , 325(1228): 437–455
    Holser, W. T., Magaritz, M., Ripperdan, R. L., 1995. Marine Isotopic Events. In: Walliser, O., ed., Global Events and Event Stratigraphy in the Phanerozoic: The Case for Sea-Level Change as a Dominant Causal Factor in Mass Extinction of Marine Invertebrates. Philos. Trans. R. Sci. , 12: 205–243
    Holser, W. T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeogr., Palaeoclimatol., Palaeoecol. , 132(1–4): 309–323
    Jiang, S. Y., Zhao, H. X., Chen, Y. Q., 2007. Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chem. Geol. , 244(3–4): 584–604
    Kajiwara, Y., Yamakita, S., Ishida, K., et al., 1994. Development of a Largely Anoxic Stratified Ocean and Its Temporary Massive Mixing at the Permian/Triassic Boundary Supported by the Sulfur Isotopic Record. Palaeogeogr., Palaeoclimatol., Palaeoecol. , 111(3–4): 367–379
    Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chem. Geol. , 182(1): 15–34 doi: 10.1016/S0009-2541(01)00273-X
    Liu, Y. G., Miah, M. R. U., Schmitt, R. A., 1988. Cerium: A Chemical Tracer for Paleo-oceanic Redox Conditions. Geochim. Cosmochim. Acta, 52: 1361–1371 doi: 10.1016/0016-7037(88)90207-4
    Metcalfe, I., 1994. Late Palaeozoic and Mesozoic Palaeogeography of Eastern Pangaea and Tethys. Can. Soc. Pet. Geol., Mem. , 17: 97–111
    Mu, E., Li, J., Ge, M., et al. ., 1981. Late Ordovician Paleogeography of South China. Acta Stratigr. Sin. , 5: 165–170 (in Chinese)
    Murray, R. W., Buchholtz, B. M. R., Jones, D. L., et al., 1990. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale. Geology, 18: 268–271 doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2
    Murray, R. W., Buchholtz, B. M. R., Brumsack, H. J., et al., 1991. Rare Earth Elements in Japan Sea Sediments and Diagenetic Behavior of Ce/Ce*: Results from ODP Leg 127. Geochim. Cosmochim. Acta, 55(9): 2453–2466 doi: 10.1016/0016-7037(91)90365-C
    Murry, R. W., Buchholtz, B. M. R., Gerlach, D. C., et al., 1992. Interoceanic Variation in the Rare Earth, Major, and Trace Element Depositional Chemistry of Chert: Perspectives Gained from the DSDP and ODP Record. Geochim. Cosmochim. Acta, 56(5): 1897–1913 doi: 10.1016/0016-7037(92)90319-E
    Piper, D. Z., 1974. Rare Earth Elements in Ferromanganese Nodules and Other Marine Phases. Geochim. Cosmochim. Acta, 38(7): 1007–1022 doi: 10.1016/0016-7037(74)90002-7
    Racki, G., Racka, M., Matyja, H., et al., 2002. The Frasnian/Famennian Boundary Interval in the South Polish-Moravian Shelf Basins: Integrated Event-Stratigraphical Approach. Palaeogeogr., Palaeoclimatol., Palaeoecol. , 181(1–3): 251–297
    Saltzman, M. R., Davidson, J. P., Holden, P., et al., 1995. Sea-Level-Driven Changes in Ocean Chemistry at an Upper Cambrian Extinction Horizon. Geology, 23: 893–896 doi: 10.1130/0091-7613(1995)023<0893:SLDCIO>2.3.CO;2
    Sholkovitz, E. R., 1988. Rare Earth Elements in the Sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea: Reinterpretation of Terrigenous Input Patterns to the Oceans. Am. J. Sci. , 288(3): 236–281 doi: 10.2475/ajs.288.3.236
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford. 311
    Tlig, S., Steinberg, M., 1982. Distribution of Rare Earth Elements (REE) in Size Fractions of Recent Sediments of the Indian Ocean. Chem. Geol. , 37(3–4): 317–333
    Wang, K., Chatterton, B. D. E., Wang, Y., 1997. An Organic Carbon Isotope Record of Late Ordovician to Early Silurian Marine Sedimentary Rocks, Yangtze Sea, South China: Implications for CO2 Changes during the Hirnantian Glaciation. Palaeogeogr., Palaeoclimatol., Palaeoecol. , 132: 147–158 doi: 10.1016/S0031-0182(97)00046-1
    Wang, K., Orth, C. J. Jr., Chatterton, B. D. E., et al., 1993. The Great Latest Ordovician Extinction on the South China Plate: Chemostratigraphic Studies of the Ordovician-Silurian Boundary Interval on the Yangtze Platform. Palaeogeogr., Palaeoclimatol., Palaeoecol. , 104(1–4): 61–79
    Wright, J., Schrader, H., Holser, W. T., 1987. Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite. Geochim. Cosmochim. Acta, 51(3): 631–644 doi: 10.1016/0016-7037(87)90075-5
    Yan, D. T., Chen, D., Wang, Q., et al., 2008. Environment Redox Changes of the Yangtze Sea during the Ordo-Silurian Transition. Acta Geologica Sinica, 82(3): 679–689
    Yan, D. T., Chen, D., Wang, Q., et al., 2009a. Carbon and Sulfur Isotopic Anomalies across the Ordovician-Silurian Boundary on the Yangtze Platform, South China. Palaeogeogr., Palaeoclimatol., Palaeoecol., 274(1–2): 32–39
    Yan, D. T., Chen, D., Wang, Q., Wang, J., 2009b. Geochemical Changes across the Ordovician-Silurian Transition on the Yangtze Platform, South China. Science in China (Ser. D), 52(1): 38–54 doi: 10.1007/s11430-008-0143-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(873) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return