Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 1
Feb 2010
Turn off MathJax
Article Contents
Xiwu LUAN, Xuechao PENG, Yingmin WANG, Yan QIU. Activity and formation of sand waves on northern South China Sea shelf. Journal of Earth Science, 2010, 21(1): 55-70. doi: 10.1007/s12583-010-0005-4
Citation: Xiwu LUAN, Xuechao PENG, Yingmin WANG, Yan QIU. Activity and formation of sand waves on northern South China Sea shelf. Journal of Earth Science, 2010, 21(1): 55-70. doi: 10.1007/s12583-010-0005-4

Activity and formation of sand waves on northern South China Sea shelf

doi: 10.1007/s12583-010-0005-4
Funds:

the National Basic Research Program of China (973 Program) 2007CB411702

the National Natural Science Foundation of China 40572067

the National Natural Science Foundation of China 40776032

More Information
  • Corresponding author: Xiwu LUAN, xluan@ms.qdio.ac.cn
  • Received Date: 20 Jun 2009
  • Accepted Date: 05 Sep 2009
  • Publish Date: 01 Feb 2010
  • Sand waves on the northern South China Sea shelf had been considered as stable relict bed form. For the industry use of sea bed between stations LF13-2 and LF13-1, a new round of explorations were conducted. The newly obtained data show that both spacings and amplitudes of sand waves are all systematically changing with water depth. Repeated observations since 2003 to 2004 showed that the sea bed is currently active. Due to strong erosion of surface sediment since Dongsha (东沙) uplifting, there are almost no modern sediments on the shelf of Dongsha area. Sand materials in the study area mainly originate from the erosion of the bed sediment formation. The water depth increment revealed by repeated echo sounder data is mainly due to erosion. Bottom currents are quite complex in the area of Dongsha underwater plateaus. At site 9MKII, the southward ebb current is stronger than the northward flood current, while at site AEM-HR, the WNW-ward flood current is slightly stronger than the ESE-ward ebb current. At site 9MKII, the maximum bottom current speed is 48 cm/s, and 22% of the observed bottom current speeds are larger than 20 cm/s, which meet the minimum bottom current speed required for the creation of sand wave. This article points out that present-day oceanographic condition couples well with the sand-wave morphologies, and that the sand waves are to a great extent in equilibrium with the ongoing present-day oceanographic bottom current condition and active.

     

  • loading
  • Allen, J. R. L., 1984. Sedimentary Structures: Their Character and Physical Basis (Vol. 1). Elsevier, Amsterdam. 593
    Amos, C. L., King, E. L., 1984. Bedforms of the Canadian Eastern Seaboard: A Comparison with Global Occurrences. Mar. Geol. , 57: 167–208 doi: 10.1016/0025-3227(84)90199-3
    Ashley, G. M., 1990. Classification of Large-Scale Subaqueous Bedforms: A New Look at an Old Problem. J. Sedim. Petrol. , 60(1): 160–172 doi: 10.2110/jsr.60.160
    Belderson, R. H., Johnson, M. A., Kenyon, N. H., 1982. Bedforms. In: Stride, A. H., ed., Offshore Tidal Sands: Processes and Deposits. Chapman and Hall, London. 27–57
    Berne, S., Castaing, P., Le Drezen, E., et al., 1993. Morphology, Internal Structure, and Reversal of Asymmetry of Large Subtidal Dunes in the Entrance to Gironde Estuary (France). J. Sedim. Petrol. , 63(5): 780–793
    Berry, L., 1959. Changing Sea Levels and Their Significance in Hong Kong. Hong Kong University Engineering Journal, 22: 23–34
    Best, J. L., 2005. The Fluid Dynamics of Rivers: A Review and Some Future Research Directions. Journal of Geophysical Research, 110: F04S02
    Best, J. L., Kostaschuk, R., 2002. An Experimental Study of Turbulent Flow over a Low-Angle Dune. Journal of Geophysical Research, 107: 3135–3154 doi: 10.1029/2000JC000294
    Bowler, J. M., 1976. Aridity in Australia: Age, Origins and Expression in Aeolian Landforms and Sediments. Earth-Science Reviews, 12: 279–310 doi: 10.1016/0012-8252(76)90008-8
    Chen, S., Li, Z., Zou, Y., 1987. Major Oil Accumulation Characteristics and Exploration Direction in the Pearl River Mouth Basin. China Oil, 4(4): 12–23
    Dalrymple, R. W., Hoogendoorn, E. L., 1997. Erosion and Deposition on Migrating Shoreface-Attached Ridges, Sable Island, Eastern Canada. Geosci. Can. , 24: 25–36
    Duane, D. B., Field, M. E., Meisburger, E. P., et al., 1972. Linear Shoals on the Atlantic Inner Continental Shelf, Florida to Long Island. In: Swift, D. J. P., Duane, D. B., Pilkey, O. H., eds., Shelf Sediment Transport: Process and Pattern. Dowden, Hutchinson and Ross, Stroudsburg, Penn. . 447–498
    Feng, W. K., Li, W., 1994. Seafloor Sand Waves in the Northern South China Sea. Tropic Oceanology, 13(3): 39–46 (in Chinese with English Abstract)
    Figueiredo, A. G., Swift, D. J. P., Stubblefield, W. L., et al., 1981. Sand Ridges on the Inner Atlantic Shelf of North America: Morphometric Comparisons with Huthnance Stability Model. Geo-Mar. Lett. , 1: 187–191 doi: 10.1007/BF02462432
    Goff, J. A., Swift, D. J. P., Duncan, C. S., et al., 1999. High-Resolution Swath Sonar Investigation of Sand Ridge, Dune and Ribbon Morphology in the Offshore Environment of the New Jersey Margin. Mar. Geol. , 161: 307–337 doi: 10.1016/S0025-3227(99)00073-0
    Gu, Q. S., Rao, K. Y., Li, X., et al., 1990. Remote Sensing Application in Lingdingyang Estuary. Science Press, Beijing (in Chinese with English Abstract)
    Guan, B., 1993. Winter Counter-Wind Current off the Southeastern China Coast and Preliminary Investigation of Its Source. In: Su, J., Wen-Sin, C., Ya, H., eds., Proceedings of the Symposium on the Physical and Chemical Oceanography of the China Seas. Ocean Press, Beijing. 1–9
    Harris, P. T., Collins, M. B., 1984. Side-Scan Sonar Investigation into Temporal Variation in Sandwave Morphology: Helwick Sands, Bristol Channel. Geo-Mar. Lett. , 4: 91–97 doi: 10.1007/BF02277078
    Hersen, P., 2004. On the Crescentic Shape of Barchan Dunes. European Physical Journal B, 37: 507–514
    Hesp, P. A., Hastings, K., 1998. Width, Height and Slope Relationships and Aerodynamic Maintenance of Barchans. Geomorphology, 22: 193–204 doi: 10.1016/S0169-555X(97)00070-6
    Ikehara, K., Kinoshita, Y., 1994. Distribution and Origin of Subaqueous Dunes on the Shelf of Japan. Mar. Geol. , 120: 75–87 doi: 10.1016/0025-3227(94)90078-7
    Knaapen, M. A. F., Hulscher, S. J. M. H., de Vriend, H. J., et al., 2001. A New Type of Bed Waves. Geophysical Research Letters, 28(7): 1323–1326 doi: 10.1029/2000GL012007
    Lancaster, N., 1982. Dunes on the Skeleton Coast, SWA/Namibia: Geomorphology and Grain Size Relationships. Earth Surface Processes and Landform, 7: 575–587 doi: 10.1002/esp.3290070606
    Langhorne, D. N., 1973. A Sandwave Field in the Outer Thames Estuary, Great Britain. Mar. Geol. , 14: 129–143 doi: 10.1016/0025-3227(73)90056-X
    Le Bot, S., Trentesaux, A., 2004. Types of Internal Structure and External Morphology of Submarine Dunes under the Influence of Tide- and Wind-Driven Processes (Dover Strait, Northern France). Mar. Geol. , 211: 143–168 doi: 10.1016/j.margeo.2004.07.002
    Li, C., Zhou, Z., Hao, H., et al., 2008. Late Mesozoic Tectonic Structure and Evolution along the Present-Day Northeastern South China Sea Continental Margin. Journal of Asian Earth Sciences, 31(4–6): 546–561
    Liang, W. D., Tang, T. Y., Yang, Y. J., et al., 2003. Upper-Ocean Currents around Taiwan. Deep-Sea Res. II, 50: 1085–1105 doi: 10.1016/S0967-0645(03)00011-0
    Liu, A. K., Chang, Y. S., Hsu, M. K., et al., 1998. Evolution of Nonlinear Internal Waves in the East and South China Seas. Journal of Geophysical Research, 103: 7995–8008 doi: 10.1029/97JC01918
    Liu, B. L., Wang, Y. P., Wang, J. Z., et al., 2004. Geochemical Characters of REE in the Seafloor Sediment in Northern Continental Slope of the South China Sea and Analysis of Source of Material and Diagenesis Environment. Marine Geology & Quaternary Geology, 24(4): 17–23 (in Chinese with English Abstract)
    Livingstone, I., Wiggs, G. F. S., Weaver, C. M., 2007. Geomorphology of Desert Sand Dunes: A Review of Recent Progress. Earth-Science Reviews, 80: 239–257 doi: 10.1016/j.earscirev.2006.09.004
    Ludmann, T., Wong, H. K., 1999. Neotectonic Regime on the Passive Continental Margin of the Northern South China Sea. Tectonophysics, 311: 113–138 doi: 10.1016/S0040-1951(99)00155-9
    Ludmann, T., Wong, H. K., Wang, P., 2001. Plio-Quaternary Sedimentation Processes and Neotectonics of the Northern Continental Margin of the South China Sea. Mar. Geol. , 172: 331–358 doi: 10.1016/S0025-3227(00)00129-8
    McBride, R. A., Moslow, T. F., 1991. Origin, Evolution and Distribution of Shoreface Sand Ridges, Atlantic Inner Shelf, USA. Mar. Geol. , 97: 57–85 doi: 10.1016/0025-3227(91)90019-Z
    McCave, I. N., Langhorne, D. N., 1982. Sandwaves and Sediment Transport around the End of a Tidal Sandbank. Sedimentology, 29: 95–110 doi: 10.1111/j.1365-3091.1982.tb01712.x
    Meijdam, L., Lapidaire, P. J. M., 1995. Sandwaves, Upheaval Buckling Challenge North Sea Project. Pipeline & Gas Industry, 78: 31–38
    Mitchell, N. C., Hughes Clarke, J. E., 1994. Classification of Sea Floor Geology Using Multibeam Sonar Data from the Scotian Shelf. Mar. Geol. , 121: 143–160 doi: 10.1016/0025-3227(94)90027-2
    Nelson, J. M., Shreve, R. L., McLean, S. R., et al., 1995. Role of Near-Bed Turbulence Structure in Bed Load Transport and Bed Form Mechanics. Water Resources Research, 31: 2071–2086 doi: 10.1029/95WR00976
    Nemeth, A. A., Hulscher, S. J. M. H., de Vriend, H. J., et al., 2002. Sand Wave Migration in Shallow Seas. Continental Shelf Research, 22(18–19): 2795–2806
    Niino, H., Emery, K. O., 1961. Sediments of Shallow Portions of East China Sea and South China Sea. Geological Society of America Bulletin, 72: 731–762 doi: 10.1130/0016-7606(1961)72[731:SOSPOE]2.0.CO;2
    Sauermann, G., Rognon, P., Poliakov, A., et al., 2000. The Shape of Barchan Dunes of Wouthern Morocco. Geomorphology, 36: 47–62 doi: 10.1016/S0169-555X(00)00047-7
    Shaw, J., Courtney, R. C., Currie, J. R., 1997. Marine Geology of St. George's Bay, Newfoundland, as Interpreted from Multibeam Bathymetry and Backscatter Data. Geo-Mar. Lett. , 17: 188–194
    Shaw, P. T., Chao, S. Y., 1994. Surface Circulation in the South China Sea. Deep-Sea Res. I, 41: 1663–1683 doi: 10.1016/0967-0637(94)90067-1
    Smith, D. E., 1988. Morphological Development of the Sandettie South Falls Gas: A Degeneration Ebb Dominated Tidal Passage in the Southern North Sea. In: de Boer, P. L., Van Gelder, A., Nio, S. D., eds., Tide-Influenced Sedimentary Environments and Facies. D. Reidel Publishing, Utrecht. 51–64
    Staub, C., Bijker, R., 1990. Dynamic Numerical Models for Sand Waves and Pipeline Self-Burial. In: Edge, B., ed., ICCE-Proceedings, ICCE. 2509–2521
    Stubblefield, W. L., McGrail, D. W., Kersey, D. G., 1984. Recognition of Transgressive and Post-Transgressive Sand Ridges on the New Jersey Continental Shelf. In: Tillman, R. W., Siemers, C. T., eds., Siliciclastic Shelf Sediments. Soc. Econ. Paleontologists and Minerologists, Tulsa. 1–23
    Swift, D. J. P., Field, M. E., 1981. Evolution of a Classic Sand Ridge Field: Maryland Sector, North American Inner Shelf. Sedimentology, 28: 461–482 doi: 10.1111/j.1365-3091.1981.tb01695.x
    Swift, D. J. P., Kofoed, J. W., Saulsbury, F. P., et al., 1972. Holocene Evolution of the Shelf Surface, Central and Southern Atlantic Shelf of North America. In: Swift, D. J. P., Duane, D. B., Pilkey, O. H., eds., Shelf Sediment Transport: Process and Pattern. Dowden, Hutchinson and Ross, Stroudsburg, Penn. . 499–574
    Tchernia, P., 1980. Descriptive Regional Oceanography. Marine Series 3. Pergamon Press, Oxford. 253
    Todd, B. J., 2005. Morphology and Composition of Submarine Barchan Dunes on the Scotian Shelf, Canadian Atlantic Margin. Geomorphology, 67: 487–500 doi: 10.1016/j.geomorph.2004.11.016
    Todd, B. J., Fader, G. B. J., Courtney, R. C., et al., 1999. Quaternary Geology and Surficial Sediment Processes, Browns Bank, Scotian Shelf, Based on Multibeam Bathymetry. Mar. Geol. , 162: 165–214 doi: 10.1016/S0025-3227(99)00092-4
    Trowbridge, J. H., 1995. A Mechanism for the Formation and Maintenance of Shore-Oblique Sand Ridges on Storm-Dominated Shelves. Journal of Geophysical Research, 100: 16071–16086 doi: 10.1029/95JC01589
    Venditti, J. C., Bauer, B. O., 2005. Turbulent Flow over a Dune: Green River, Colorado. Earth Surface Processes and Landforms, 30: 289–304 doi: 10.1002/esp.1142
    Wang, L. J., Sarnthein, M., Erlenkeuser, H., et al., 1999. East Asian Monsoon Climate during the Late Pleistocene: High-Resolution Sediment Records from the South China Sea. Mar. Geol. , 156: 245–284 doi: 10.1016/S0025-3227(98)00182-0
    Wang, P. X., 1999. Response of Western Pacific Marginal Seas to Glacial Cycles: Paleoceanographic and Sedimentological Features. Mar. Geol. , 156: 5–39 doi: 10.1016/S0025-3227(98)00172-8
    Wang, P. X., Wang, L. J., Bian, Y. H., et al., 1995. Late Quaternary Paleoceanography of the South China Sea: Surface Circulation and Carbonate Cycles. Mar. Geol. , 127: 145–165 doi: 10.1016/0025-3227(95)00008-M
    Wang, S. Y., Gu, Y. Y., Guo, C. Z., 1990. Estuarine Engineering Modals. Ocean Press, Beijing. 120 (in Chinese with English Abstract)
    Webster, P., 1987. The Elementary Monsoon. John Wiley & Sons, New York. 3–32
    Yan, P., Deng, H., Liu, H., et al., 2006. The Temporal and Spatial Distribution of Volcanism in the South China Sea Region. Journal of Asian Earth Sciences, 27: 647–659 doi: 10.1016/j.jseaes.2005.06.005
    Yim, W. W. S., 1999. Radiocarbon Dating and the Reconstruction of Late Quaternary Sea-Level Changes in Hong Kong. Quaternary International, 55: 77–91 doi: 10.1016/S1040-6182(98)00029-9
    Yim, W. W. S., Huang, G., Fontugne, M. R., et al., 2006. Postglacial Sea-Level Changes in the Northern South China Sea Continental Shelf: Evidence for a Post-8200 Calendar yr BP Meltwater Pulse. Quaternary International, 145–146: 55–67
    Zhang, X. Y., Zhang, F. Y., Zhang, W. Y., 2003. Regional Variation of 87Sr/86Sr Ratio and Compositions of the Surface Sediment in the Eastern South China Sea. Acta Oceanologica Sinica, 25(4): 43–49 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(881) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return