Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 4
Aug 2010
Turn off MathJax
Article Contents
S K Dwivedi, D Hayashi. Modeling the Contemporary Stress Field and Deformation Pattern of Eastern Mediterranean. Journal of Earth Science, 2010, 21(4): 365-381. doi: 10.1007/s12583-010-0100-6
Citation: S K Dwivedi, D Hayashi. Modeling the Contemporary Stress Field and Deformation Pattern of Eastern Mediterranean. Journal of Earth Science, 2010, 21(4): 365-381. doi: 10.1007/s12583-010-0100-6

Modeling the Contemporary Stress Field and Deformation Pattern of Eastern Mediterranean

doi: 10.1007/s12583-010-0100-6
More Information
  • Corresponding author: S K Dwivedi, sunildwd@gmail.com
  • Received Date: 22 Jan 2010
  • Accepted Date: 10 Apr 2010
  • Publish Date: 01 Aug 2010
  • The contemporary stress field in the earth's crust is important and provides insights into mechanisms that drive plate motions. In this study, elastic plane stress finite element modeling incorporating realistic rock parameters was used to calculate the stress field, displacement field, and deformation of the plate interactions in the eastern Mediterranean. Modeled stress data for the African-Arabian-Anatolian plate interactions with fixed European platform correlate well with observed contemporary stress indicator from the world stress map (WSM) and focal mechanism of earthquakes; while displacement field agrees qualitatively well with GPS vectors and sense of motion indicated by focal mechanisms for large crustal earthquakes (Ms > 6) and plate motion models. Modeling result shows the direction of maximum horizontal compressive stress (σHmax) toward the direction of absolute motion of these plates. Large perturbations in σHmax orientations are shown to occur in and around tectonic boundaries between those plates. It is observed that, although the African plate acts mostly as indenter, which transmits the collisional motion from the Arabian plate to the Anatolian plate, in the current situation, the far-field stress, probably from the subduction in Aegean Arc, is needed to satisfy the contemporary stress field in Anatolia.

     

  • loading
  • Ambraseys, N. N., Jackson, J. A., 1998. Faulting Associated with Historical and Recent Earthquakes in the Eastern Mediterranean. Geophysical Journal International, 133(2): 390–406 doi: 10.1046/j.1365-246X.1998.00508.x
    Angelier, J., 1979. Néotectonique de l'arc Egéen. Soc. Geol. du Nord, 3
    Armijo, R., Meyer, B., Hubert, A., et al., 1999. Westward Propagation of the North Anatolian Fault into the Northern Aegean: Timing and Kinematics. Geology, 27: 267–270 doi: 10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2
    Arpat, E., Saroglu, F., 1972. The East Anatolian Fault System: Thoughts on Its Development. Bulletin of the Mineral Research and Exploration Institute of Turkey, 78: 33–39
    Barka, A., 1992. The North Anatolian Fault Zone. Annales Tectonicae, 6(Suppl. ): 164–195
    Barka, A. A., Kadinsky-Cade, K., 1988. Strike-Slip Fault Geometry in Turkey and Its Influence on Earthquake Activity. Tectonics, 7(3): 663–684 doi: 10.1029/TC007i003p00663
    Bozkurt, E., 2001. Neotectonics of Turkey: A Synthesis. Geodinamica Acta, 14(1–3): 3–30
    Bozkurt, E., Kocyigit, A., 1996. The Kazova Basin: An Active Negative Flower Structure on the Almus Fault Zone, a Splay Fault System of the North Anatolian Fault Zone, Turkey. Tectonophysics, 265(3–4): 239–254
    Chu, D. Z., Gordon, R. G., 1998. Current Plate Motions across the Red Sea. Geophysical Journal International, 135(2): 313–328 doi: 10.1046/j.1365-246X.1998.00658.x
    Cianetti, S., Gasperini, P., Boccaletti, M., et al., 1997. Reproducing the Velocity and Stress Fields in the Aegean Region. Geophysical Research Letters, 24(16): 2087–2090 doi: 10.1029/97GL01938
    Cianetti, S., Gasperini, P., Giunchi, C., et al., 2001. Numerical Modelling of the Aegean-Anatolian Region: Geodynamical Constraints from Observed Rheological Heterogeneities. Geophysical Journal International, 146(3): 760–780 doi: 10.1046/j.1365-246X.2001.00492.x
    Clark, S. P. Jr., 1966. Handbook of Physical Constants. Geological Society of America Memoir 97, New York. 587
    Davies, R., England, P., Parsons, B., et al., 1997. Geodetic Strain of Greece in the Interval 1892–1992. Journal of Geophysical Research, 102(B11): 24571–24588 doi: 10.1029/97JB01644
    DeMets, C., Gordon, R. G., Argus, D. F., et al., 1990. Current Plate Motions. Geophysical Journal International, 101(2): 425–478 doi: 10.1111/j.1365-246X.1990.tb06579.x
    DeMets, C., Gordon, R. G., Argus, D. F., et al., 1994. Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions. Geophysical Research Letters, 21(20): 2191–2194 doi: 10.1029/94GL02118
    Dewey, J. F., Hempton, M. R., Kidd, W. S. F., et al., 1986. Shortening of Continental Lithosphere: The Neotectonics of Eastern Anatolia, a Young Collision Zone. Geological Society Special Publications, 19: 3–36
    Dewey, J. F., Pitman, W. C., Ryan, W. B. F., et al., 1973. Plate Tectonics and the Evolution of the Alpine System. Geological Society of America Bulletin, 84(12): 3137–3180
    Doutsos, T., Kokkalas, S., 2001. Stress and Deformation Patterns in the Aegean Region. Journal of Structural Geollogy, 23(2–3): 455–472
    Dwivedi, S. K., Hayashi, D., 2009. Numerical Modeling of the Development of Southeastern Red Sea Continental Margin. Earthquake Science, 22(3): 239–249. doi: 10.1007/s11589-009-0239-3
    Dwivedi, S. K., Hayashi, D., 2008. FE Modeling of Contem porary Stress Field in Northeast Africa: Implications for the Kinematics of Suez Rift. Boll. Geofís. Teor. Appl., 49(Suppl. 2): 318–323
    Fischer, K. D., 2006. The Influence of Different Rheological Parameters on the Surface Deformation and Stress Field of the Aegean-Anatolian Region. International Journal of Earth Sciences, 95(2): 239–249 doi: 10.1007/s00531-005-0031-0
    Garfunkel, Z., Ben-Avraham, Z., 1996. The Structure of the Dead Sea Basin. Tectonophysics, 266(1–4): 155–176
    Gephart, J. W., Forsyth, D. W., 1984. An Improved Method for Determining the Regional Stress Tensor Using Earthquake, Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research, 89(B11): 9305–9320 doi: 10.1029/JB089iB11p09305
    Hayashi, D., 2008. Theoretical Basis of FE Simulation Software Package. Bull. Fac. Sci. Univ. Ryukyus, 85: 81–95 (http://ir.lib.u-ryukyu.ac.jp)
    Heidbach, O., Tingay, M., Barth, A., et al., 2008. The 2008 Release of the World Stress Map (Available Online at www.world-stress-map.org)
    Hempton, M. R., 1987. Constraints on Arabian Plate Motion and Extensional History of the Red Sea. Tectonics, 6(6): 687–705 doi: 10.1029/TC006i006p00687
    Jackson, J., 1994. Active Tectonics of the Aegean Region. Annual Review of Earth and Planetary Sciences, 22: 239–271 doi: 10.1146/annurev.ea.22.050194.001323
    Jackson, J., Haines, J., Holt, W., 1995. The Accommodation of Arabia-Eurasia Plate Convergence in Iran. Journal of Geophysical Research, 100(B8): 15205–15219 doi: 10.1029/95JB01294
    Jackson, J., McKenzie, D., 1984. Active Tectonics of the Alpine-Himalayan Belt between Western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society, 77(1): 185–264 doi: 10.1111/j.1365-246X.1984.tb01931.x
    Joffe, S., Garfunkel, Z., 1987. Plate Kinematics of the Circum Red Sea: A Reevaluation. Tectonophysics, 141(1–3): 5–22
    Kahle, H. G., Cocard, M., Peter, Y., et al., 2000. GPS-Derived Strain Rate Field within the Boundary Zones of the Eurasian, African, and Arabian Plates. Journal of Geophysical Research, 105(B10): 23353–23370 doi: 10.1029/2000JB900238
    Kahle, H. G., Muller, M. V., Geiger, A., et al., 1995. The Strain Field in NW Greece and the Ionian Islands: Results Inferred from GPS Measurements. Tectonophysics, 249: 41–52 doi: 10.1016/0040-1951(95)00042-L
    Kempler, D., Garfunkel, Z., 1994. Structures and Kinematics in the Northeastern Mediterranean: A Study of an Irregular Plate Boundary. Tectonophysics, 234(1–2): 19–32
    Kiratzi, A. A., 1993. A Study on the Active Crustal Deformation of the North and East Anatolian Fault Zones. Tectonophysics, 225(3): 191–203 doi: 10.1016/0040-1951(93)90279-S
    Kiratzi, A. A., Papazachos, C. B., 1995. Active Crustal Deformation from the Azores Triple Junction to the Middle East. Tectonophysics, 243(1–2): 1–24
    Kocyigit, A., 1989. Susehri Basin: An Active Fault-Wedge Basin on the North Anatolian Fault Zone, Turkey. Tectonophysics, 167(1): 13–29 doi: 10.1016/0040-1951(89)90291-6
    Le Pichon, X., Angelier, J., 1979. The Hellenic Arc and Trench System: A Key to the Neotectonic Evolution of the Eastern Mediterranean Area. Tectonophysics, 60(1–2): 1–42
    Le Pichon, X., Chamot-Rooke, N., Lallemant, S., 1995. Geodetic Determination of the Kinematics of Central Greece with Respect to Europe: Implications for Eastern Mediterranean Tectonics. Journal of Geophysical Research, 100(B7): 12675–12690 doi: 10.1029/95JB00317
    Le Pichon, X., Gaulier, J. M., 1988. The Rotation of Arabia and the Levant Fault System. Tectonophysics, 153(1–4): 271–294
    Lundgren, P., Giardini, D., Russo, R. M., 1998. A Geodynamic Framework for Eastern Mediterranean Kinematics. Geophysical Research Letters, 25(21): 4007–4010 doi: 10.1029/1998GL900096
    Lyberis, N., 1988. Tectonic Evolution of the Gulf of Suez and the Gulf of Aqaba. Tectonophysics, 153(1–4): 209–220
    McClusky, S., Balassanian, S., Barka, A., et al., 2000. Global Positioning System Constraints on Plate Kinematics and Dynamics in the Eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105(B3): 5695–5719 doi: 10.1029/1999JB900351
    McClusky, S., Reilinger, R., Mahmoud, S., et al., 2003. GPS Constraints on Africa (Nubia) and Arabia Plate Motions. Geophysical Journal International, 155(1): 126–138 doi: 10.1046/j.1365-246X.2003.02023.x
    McKenzie, D. P., 1970. Plate Tectonics of the Mediterranean Region. Nature, 226(5242): 239–243 doi: 10.1038/226239a0
    McKenzie, D. P., 1972. Active Tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society, 30(2): 109–185 doi: 10.1111/j.1365-246X.1972.tb02351.x
    McKenzie, D. P., 1976. The East Anatolian Fault: A Major Structure in the Eastern Turkey. Earth and Planetary Science Letters, 29(1): 189–193 doi: 10.1016/0012-821X(76)90038-8
    Meijer, P. T., Wortel, M. J. R., 1996. Temporal Variation in the Stress Field of the Aegean Region. Geophysical Research Letters, 23(5): 439–442 doi: 10.1029/96GL00380
    Meijer, P. T., Wortel, M. J. R., 1997. Present-Day Dynamics of the Aegean Region: A Model Analysis of the Horizontal Pattern of Stress and Deformation. Tectonics, 16(6): 879–895 doi: 10.1029/97TC02004
    Neves, S. P., Silva, J. M. R., Mariano, G., 2005. Oblique Lineations in Orthogneisses and Supracrustal Rocks: Vertical Partitioning of Strain in a Hot Crust, Eastern Borborema Province, NE Brazil. Journal of Structural Geology, 27(8): 1513–1527 doi: 10.1016/j.jsg.2005.02.002
    Nyst, M., Thatcher, W., 2004. New Constraints on the Active Tectonic Deformation of the Aegean. Journal of Geophysical Research, 109(B11406), doi: 10.1029/2003JB002830
    Otsubo, M., Hayashi, D., 2003. Neotectonics in Southern Ryukyu Arc by Means of Paleostress Analysis. Bull. Fac. Sci. Univ. Ryukyus, 76: 1–73
    Papazachos, C. B., 1999. Seismological GPS Evidence for the Aegean-Anatolia Interaction. Geophysical Research Letters, 26(17): 2653–2656 doi: 10.1029/1999GL900411
    Papazachos, C. B., Kiratzi, A. A., 1992. A Formulation for Reliable Estimation of Active Crustal Deformation and Its Application to Central Greece. Geophysical Journal International, 111(3): 424–432 doi: 10.1111/j.1365-246X.1992.tb02101.x
    Papazachos, C. B., Kiratzi, A. A., 1996. A Detailed Study of the Active Crustal Deformation in the Aegean and Surrounding Area. Tectonophysics, 253(1–2): 129–153
    Rebai, S., Philip, H., Taboada, A., 1992. Modern Tectonic Stress Field in the Mediterranean Region: Evidence for Variation in Stress Directions at Different Scales. Geophysical Journal International, 110(1): 106–140 doi: 10.1111/j.1365-246X.1992.tb00717.x
    Reilinger, R., McClusky S., Oral, M., et al., 1997. Global Positioning System Measurements of Present-Day Crustal Movements in the Arabia-Africa-Eurasia Plate Collision Zone. Journal of Geophysical Research, 102(B5): 9983–9999 doi: 10.1029/96JB03736
    Scordilis, E. M., Karakaisis, G. F., Karakostas, B. G., et al., 1985. Evidence for Transform Faulting in the Ionian Sea: The Cephalonia Island Earthquake Sequence of 1983. Pure and Applied Geophysics, 123(3): 388–397 doi: 10.1007/BF00880738
    Sengör, A. M. C., 1979. The North Anatolian Transform Fault: Its Age, Offset and Tectonic Significance. Journal of the Geological Society, 136: 269–282 doi: 10.1144/gsjgs.136.3.0269
    Sengör, A. M. C., 1987. Cross-Faults and Differential Stretching of Hanging Walls in Regions of Low-Angle Normal Faulting: Examples from Western Turkey. Geological Society Special Publications, 28: 575–589 doi: 10.1144/GSL.SP.1987.028.01.38
    Steckler, M. S., Berthelot, F., Lyberis, N., et al., 1988. Subsidence in the Gulf of Suez: Implications for Rifting and Plate Kinematics. Tectonophysics, 153(1–4): 249–270
    Tatar, O., Piper, J. D. A., Gursoy, H., et al., 1996. Regional Significance of Neotectonic Counterclockwise Rotation in Central Turkey. International Geology Review, 38(8): 692–700 doi: 10.1080/00206819709465353
    Taymaz, T., Eyidogan, H., Jackson, J., 1991. Source Parameters of Large Earthquakes in the East Anatolian Fault Zone (Turkey). Geophysical Journal International, 106(3): 537–550 doi: 10.1111/j.1365-246X.1991.tb06328.x
    Toksoz, M. N., Shakal, A. F., Michael, A. I., 1979. Space-Time Migration of Earthquakes along the North Anatolian Fault Zone and Seismic Gaps. Pure and Applied Geophysics, 117(6): 1258–1270 doi: 10.1007/BF00876218
    Vidal, N., Alvarez-Marron, J., Klaeschen, D., 2000. The Structure of the Africa-Anatolia Plate Boundary in the Eastern Mediterranean. Tectonics, 19(4): 723–739 doi: 10.1029/2000TC900011
    Westaway, R., 1994. Present-Day Kinematics of the Middle East and Eastern Mediterranean. Journal Geophysical Research, 99(B6): 12071–12090 doi: 10.1029/94JB00335
    Wortel, M. J. R., Spakman, W., 2000. Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science, 290(5498): 1910–1917 doi: 10.1126/science.290.5498.1910
    Yin, Z. M., Ranalli, G., 1992. Critical Stress Differences, Fault Orientation and Slip Direction in Anisotropic Rocks under Non-Andersonian Stress Systems. Journal of Structural Geology, 14(2): 237–244 doi: 10.1016/0191-8141(92)90060-A
    Zheng, Y., D., Wang, T., Ma, M. B., et al., 2004. Maximum Effective Moment Criterion and the Origin of Low-Angle Normal Faults. Journal of Structural Geology, 26(2): 271–285 doi: 10.1016/S0191-8141(03)00079-8
    Zheng, Y. D., Wang, T., Zhang, J. J., 2009. Structural Analysis of Mylonitic Rocks in the Cougar Creek Complex, Oregon-Idaho Using the Porphyroclast Hyperbolic Distribution Method, and Potential Use of SC-Type Extensional Shear Bands as Quantitative Vorticity Indicators: Discussion. Journal of Structural Geology, 31(5): 541–543 doi: 10.1016/j.jsg.2009.01.012
    Zitter, T. A. C., Woodside, J. M., Mascle, J., 2000. Ongoing Deformation along the Western Branch of the Cyprus Arc. European Geophysical Society XXV General Assembly, Nice, France, 25–29 April 2000, Geophysical Research Abstracts, 2, 16
    Zoback, M. L., 1992. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. Journal of Geophysical Research, 97(B8): 11703–11728 doi: 10.1029/92JB00132
    Zoback, M. L., Zoback, M. D., 1980. State of Stress in the Conterminous United States. Journal of Geophysical Research, 85(B11): 6113–6156 doi: 10.1029/JB085iB11p06113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(995) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return