Baas, M., Pancost, R., van Geel, B., et al., 2000. A Comparative Study of Lipids in Sphagnum Species. Organic Geochemistry, 31(6): 535–541 doi: 10.1016/S0146-6380(00)00037-1 |
Bai, Y., Fang, X. M., Wang, Y. L., et al., 2006. Distribution of Aliphatic Ketones in Chinese Soils: Potential Environmental Implications. Organic Geochemistry, 37(7): 860–869 doi: 10.1016/j.orggeochem.2005.11.009 |
Bull, I. D., van Bergen, P. F., Nott, C. J., et al., 2000. Organic Geochemical Studies of Soils from the Rothamsted Classical Experiments: V, The Fate of Lipids in Different Long-Term Experiments. Organic Geochemistry, 31(5): 389–408 doi: 10.1016/S0146-6380(00)00008-5 |
Cayet, C., Lichtfouse, E., 2001. δ 13C of Plant-Derived n-Alkanes in Soil Particle-Size Fractions. Organic Geochemistry, 32(2): 253–258 doi: 10.1016/S0146-6380(00)00172-8 |
Chikaraishi, Y., Naraoka, H., 2006. Carbon and Hydrogen Isotope Variation of Plant Biomarkers in a Plant-Soil System. Chemical Geology, 231(3): 190–202 doi: 10.1016/j.chemgeo.2006.01.026 |
Chikaraishi, Y., Naraoka, H., 2007. δ13C and δD Relationships among Three n-Alkyl Compound Classes (n-Alkanoic Acid, n-Alkane and n-Alkanol) of Terrestrial Higher Plants. Organic Geochemistry, 38(2): 198–215 doi: 10.1016/j.orggeochem.2006.10.003 |
Cui, J. W., Huang, J. H., Pu, Y., et al., 2008. Comparison of Lipid Compositions between Plant Leaves and Overlying Soil in Heshang Cave, Qingjiang, Hubei Province and Its Significance. Quaternary Sciences, 28(1): 35–42 (in Chinese with English Abstract) |
Deines, P., 1980. The Isotopic Composition of Reduced Organic Carbon. In: Handbook of Environmental Isotope Geochemistry: Volume 1, The Terrestrial Environment, A. Elsevier, Amsterdam. 329–406 |
Fierer, N., Schimel, J. P., Holden, P. A., 2003. Variations in Microbial Community Composition through Two Soil Profiles. Soil Biology and Biochemistry, 35(1): 167–176 doi: 10.1016/S0038-0717(02)00251-1 |
Grice, K., 1995. Distributions and Stable Carbon Isotopic Compositions of Individual Biological Markers from the Permian Kupferschiefer (Lower Rhine Basin, N.W. Germany): [Dissertation]. University of Bristol, Bristol |
Hernandez, M. E., Mead, R., Peralba, M. C., et al., 2001. Origin and Transport of n-Alkane-2-Ones in a Subtropical Estuary: Potential Biomarkers for Seagrass-Derived Organic Matter. Organic Geochemistry, 32(1): 21–32 doi: 10.1016/S0146-6380(00)00157-1 |
Howard, P. J. A., Howard, D. M., Lowe, L. E., 1998. Effects of Tree Species and Soil Physico-chemical Conditions on the Nature of Soil Organic Matter. Soil Biology and Biochemistry, 30(3): 285–297 doi: 10.1016/S0038-0717(97)00138-7 |
Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3–4): 221–232 |
Huang, X. Y., Cui, J. W., Pu, Y., et al., 2008. Identifying "Free" and "Bound" Lipid Fractions in Stalagmite Samples: An Example from Heshang Cave, Southern China. Applied Geochemistry, 23(9): 2589–2595 doi: 10.1016/j.apgeochem.2008.05.008 |
Huang, Y. S., Bol, R., Harkness, D. D., et al., 1996. Post-Glacial Variations in Distributions, 13C and 14C Contents of Aliphatic Hydrocarbons and Bulk Organic Matter in Three Types of British Acid Upland Soils. Organic Geochemistry, 24(3): 273–287 doi: 10.1016/0146-6380(96)00039-3 |
Huang, Y. S., Clemens, S. C., Liu, W. G., et al., 2007. Large-Scale Hydrological Change Drove the Late Miocene C4 Plant Expansion in the Himalayan Foreland and Arabian Peninsula. Geology, 35: 531–534 doi: 10.1130/G23666A.1 |
Lichtfouse, E., 1995. 13C Labelling of Soil n-Hentriacontane (C31) by Maize Cultivation. Tetrahedron Letters, 36(4): 529–530 doi: 10.1016/0040-4039(94)02305-U |
Lichtfouse, E., 1998. Isotope and Biosynthetic Evidence for the Origin of Long-Chain Aliphatic Lipids in Soils. Naturwissenschaften, 85(2): 76–77 doi: 10.1007/s001140050456 |
Lockeart, M. J., van Bergen, P. F., Evershed, R. P., 1997. Variations in the Stable Carbon Isotope Compositions of Individual Lipids from the Leaves of Modern Angiosperms: Implications for the Study of Higher Land Plant-Derived Sedimentary Organic Matters. Organic Geochemistry, 26(1–2): 137–153 |
Marseille, F., Disnar, J. R., Guillet, B., et al., 1999. n-Alkanes and Free Fatty Acids in Humus and A1 Horizons of Soils under Beech, Spruce and Grass in the Massif-Central (Mont-Lozere), France. European Journal of Soil Science, 50(3): 433–441 doi: 10.1046/j.1365-2389.1999.00243.x |
Meyers, P. A., Ishiwatari, R., 1993. Lacustrine Organic Geochemistry: An Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments. Organic Geochemistry, 20(7): 867–900 doi: 10.1016/0146-6380(93)90100-P |
Muchembled, J., Grandmougin-Ferjani, A., Sancholle, M., et al., 2000. Effect of Age on the Fatty Acid Content of Blumeria Graminis Conidia. Biochemical Society Transactions, 28: 875–877 doi: 10.1042/bst0280875 |
Naafs, D. F. W., van Bergen, P. F., Boogert, S. J., et al., 2004. Solvent-Extractable Lipids in an Acid Andic Forest Soil: Variations with the Depth and Season. Soil Biology and Biochemistry, 36(2): 297–308 doi: 10.1016/j.soilbio.2003.10.005 |
Nichols, J. E., Huang, Y. S., 2007. C23–C31 n-Alkan-2-Ones are Biomarkers for the Genus Sphagnum in Freshwater Peatlands. Organic Geochemistry, 38(11): 1972–1976 doi: 10.1016/j.orggeochem.2007.07.002 |
Prahl, F. G., Hayes, J. M., Xie, T. M., 1992. An Indicator of Terrigenous Organic Carbon in Washington Coastal Sediments. Limnology and Oceanography, 37(6): 1290–1300 doi: 10.4319/lo.1992.37.6.1290 |
Pu, Y., Huang, J. H., Huang, X. Y., et al., 2006. Acyclic Alkanes in the Soil over Heshang Cave, Qingjiang, Hubei Province. Journal of China University of Geosciences, 17(2): 115–120 doi: 10.1016/S1002-0705(06)60015-0 |
Řezanka, T., Zlatkin, I. V., Viden, I., et al., 1991. Capillary Gas Chromatography-Mass Spectrometry of Unusual and Very Long-Chain Fatty Acids from Soil Oligotrophic Bacteria. Journal of Chromatography A, 558(1): 215–221 doi: 10.1016/0021-9673(91)80127-3 |
Rieley, G., Collie, R. J., Jones, D. M., et al., 1991. Sources of Sedimentary Lipids Deduced from Stable Carbon-Isotope Analyses of Individual Compounds. Nature, 352(6334): 425–427 doi: 10.1038/352425a0 |
Rieley, G., Collister, J. W., Stern, B., et al., 1993. Gas Chromatography/Isotope Ratio Mass Spectrometry of Leaf Waxn-Alkanes from Plants of Differing Carbon Dioxide Metabolisms. Rapid Communications in Mass Spectrometry, 7(6): 488–491 doi: 10.1002/rcm.1290070617 |
Ries, S. K., Wert, V., Sweeley, C. C., et al., 1977. Triacontanol: A New Naturally Occurring Plant Growth Regulator. Science, 195(4284): 1339–1341 doi: 10.1126/science.195.4284.1339 |
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., et al., 1991. Sources of Fine Organic Aerosol, 1: Charbroilers and Meat Cooking Operations. Environmental Science and Technology, 25(6): 1112–1125 doi: 10.1021/es00018a015 |
Rommerskirchen, F., Plader, A., Eglinton, G., et al., 2006. Chemotaxonomic Significance of Distribution and Stable Carbon Isotopic Composition of Long-Chain Alkanes and Alkan-1-Ols in C4 Grass Waxes. Organic Geochemistry, 37(10): 1303–1332 doi: 10.1016/j.orggeochem.2005.12.013 |
Ruess, L., Häggblom, M. M., García-Zapata, E. J., et al., 2002. Fatty Acids of Fungi and Nematodes-Possible Biomarkers in the Soil Food Chain? Soil Biology and Biochemistry, 34(6): 745–756 doi: 10.1016/S0038-0717(01)00231-0 |
Simoneit, B. R. T., 1977. Organic Matter in Eolian Dusts over the Atlantic Ocean. Marine Chemistry, 5(4–6): 443–464 |
Simoneit, B. R. T., Mazurek, M. A., Brenner, S., et al., 1979. Organic Geochemistry of Recent Sediments from Guaymas Basin, Gulf of California. Deep-Sea Research, 26(8): 879–889 doi: 10.1016/0198-0149(79)90102-X |
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Schouten, S., et al., 2004. The Occurrence of Hopanoids in Planctomycetes: Implications for the Sedimentary Biomarker Record. Organic Geochemistry, 35(5): 561–566 doi: 10.1016/j.orggeochem.2004.01.013 |
Sun, M. Y., Zou, L., Dai, J. H., et al., 2004. Molecular Carbon Isotopic Fractionation of Algal Lipids during Decomposition in Natural Oxic and Anoxic Seawaters. Organic Geochemistry, 35(8): 895–908 doi: 10.1016/j.orggeochem.2004.04.001 |
Szafranek, B., Maliñski, E., Nawrot, J., et al., 2001. In Vitro Effects of Cuticular Lipids of Aphids Sitobion avenae, Hyalopterus pruni and Brevicoryne brassicae on Growth and Sporulation of the Paecilomyces fumosoroseus and Beauveria bassiana. Archive for Organic Chemistry, 3: 81–94 |
Uemura, H., Ishiwatari, R., 1995. Identification of Unusual 17β(H)-Moret-22(29)-Ene in Lake Sediments. Organic Geochemistry, 23(7): 675–680 doi: 10.1016/0146-6380(95)00036-E |
Volkman, J. K., Farrington, J. W., Gagosian, R. B., et al., 1983. Lipid Composition of Coastal Marine Sediments from the Peru Upwelling Region. Organic Geochemistry, 10: 228–240 |
Wiesenberg, G. L. B., Schwarzbauer, J., Schmidt, M. W. I., et al., 2004. Source and Turnover of Organic Matter in Agricultural Soils Derived from n-Alkane/n-Carboxylic Acid Compositions and C-Isotope Signatures. Organic Geochemistry, 35(11–12): 1371–1393 |
Winkler, A., Haumaier, L., Zech, W., 2005. Insoluble Alkyl Carbon Components in Soils Derive Mainly from Cutin and Suberin. Organic Geochemistry, 36(4): 519–529 doi: 10.1016/j.orggeochem.2004.11.006 |
Xie, S. C., Chen, F. H., Wang, Z. Y., et al., 2002. The Occurrence of a Grassy Vegetation over the Chinese Loess Plateau since the Last Interglacier: The Molecular Fossil Record. Science in China (Ser. D), 45(1): 54–62 doi: 10.1360/02yb9008 |
Xie, S. C., Huang, J. H., Wang, H. M., et al., 2005. Distributions of Fatty Acids in a Stalagmite Related to Paleoclimate Change at Qingjiang in Hubei, Southern China. Science in China (Ser. D), 35(3): 246–251 (in Chinese) |
Xie, S. C., Yao, T. D., Kang, S. C., et al., 1999. Climatic and Environmental Implications from Organic Matter in Dasuopu Glacier in Xixiabangma in Qinghai-Tibetan Plateau. Science in China (Ser. D), 42(4): 383–391 doi: 10.1007/BF02882058 |
Xie, S. C., Yi, Y., Huang, J. H., et al., 2003a. Lipid Distribution in a Subtropical Southern China Stalagmite as a Record of Soil Ecosystem Response to Paleoclimate Change. Quaternary Research, 60(3): 340–347 doi: 10.1016/j.yqres.2003.07.010 |
Xie, S. C., Yi, Y., Liu, Y. Y., et al., 2003b. The Pleistocene Vermicular Red Earth in South China Signaling the Global Climatic Change: The Molecular Fossil Record. Science in China (Ser. D), 46: 1113–1120 |
Zhang, Z. H., Zhao, M. X., Eglinton, G., et al., 2006. Leaf Wax Lipids as Paleovegetational and Paleoenvironmental Proxies for the Chinese Loess Plateau over the Last 170 kyr. Quaternary Science Reviews, 25(5–6): 575–594 |
Zheng, Y. H., Zhou, W. J., Meyers, P. A., et al., 2007. Lipid Biomarkers in the Zoige-Hongyuan Peat Deposit: Indicators of Holocene Climate Changes in West China. Organic Geochemistry, 38(11): 1927–1940 doi: 10.1016/j.orggeochem.2007.06.012 |
Zhou, W., Xie, S., Meyers, P. A., et al., 2005. Reconstruction of Late Glacial and Holocene Climate Evolution in Southern China from Geolipids and Pollen in the Dingnan Peat Sequence. Organic Geochemistry, 36(9): 1272–1284 doi: 10.1016/j.orggeochem.2005.04.005 |