Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 4
Aug 2010
Turn off MathJax
Article Contents
Jingwei Cui, Junhua Huang, Philip A Meyers, Xianyu Huang, Jingjing Li, Wengui Liu. Variation in Solvent-Extractable Lipids and n-Alkane Compound-Specific Carbon Isotopic Compositions with Depth in a Southern China Karst Area Soil. Journal of Earth Science, 2010, 21(4): 382-391. doi: 10.1007/s12583-010-0101-5
Citation: Jingwei Cui, Junhua Huang, Philip A Meyers, Xianyu Huang, Jingjing Li, Wengui Liu. Variation in Solvent-Extractable Lipids and n-Alkane Compound-Specific Carbon Isotopic Compositions with Depth in a Southern China Karst Area Soil. Journal of Earth Science, 2010, 21(4): 382-391. doi: 10.1007/s12583-010-0101-5

Variation in Solvent-Extractable Lipids and n-Alkane Compound-Specific Carbon Isotopic Compositions with Depth in a Southern China Karst Area Soil

doi: 10.1007/s12583-010-0101-5
Funds:

National Natural Science Foundation of China 40572098

National Natural Science Foundation of China 40525008

National Natural Science Foundation of China 40621002

National Natural Science Foundation of China 40531004

111 Project B08030

More Information
  • Corresponding author: Jingwei Cui, jingwei.cui@126.com
  • Received Date: 10 Feb 2010
  • Accepted Date: 10 Apr 2010
  • Publish Date: 01 Aug 2010
  • Because literatures about the lipid compositions of modern soils in karst areas are scarce, we have studied the soil horizons overlying the Heshang (和尚) Cave that has provided paleoclimate records from speleothem lipid contents. Our analysis reveals a series of n-alkanes, free fatty acids, n-alkanols and n-alkan-2-ones distribution and relative abundance changing with the depth, and in which the ratios of the lower molecular weight to higher molecular weight n-alkanes, free fatty acids, n-alkanols and n-alkan-2-ones have a peak at a subsurface depth of 5 to 10 cm. An accompanying peak in 17β(H), 21β(H)-hop-22(29)-ene (diploptene) and a shift to less negative n-alkane carbon isotopic values also identify this layer in the karst soil. This pattern indicates the existence of a subsurface soil layer in which the microorganisms that produce these compounds are especially abundant. The carbon isotopic values of individual plant wax n-alkanes are about 3‰ greater at the base of the 30- to 40-cm soil profile than in the surface layer, probably as a result of selective microbial degradation of n-alkanes from different primary sources. The lipids and carbon isotopic values of individual plant wax n-alkanes study of the overlying soil show a strong microbial activity in this karst soil and help in interpreting the lipid compositions and specific carbon isotopic value of n-alkanes of the stalagmites of the Heshang Cave for paleoenvironmental reconstructions.

     

  • loading
  • Baas, M., Pancost, R., van Geel, B., et al., 2000. A Comparative Study of Lipids in Sphagnum Species. Organic Geochemistry, 31(6): 535–541 doi: 10.1016/S0146-6380(00)00037-1
    Bai, Y., Fang, X. M., Wang, Y. L., et al., 2006. Distribution of Aliphatic Ketones in Chinese Soils: Potential Environmental Implications. Organic Geochemistry, 37(7): 860–869 doi: 10.1016/j.orggeochem.2005.11.009
    Bull, I. D., van Bergen, P. F., Nott, C. J., et al., 2000. Organic Geochemical Studies of Soils from the Rothamsted Classical Experiments: V, The Fate of Lipids in Different Long-Term Experiments. Organic Geochemistry, 31(5): 389–408 doi: 10.1016/S0146-6380(00)00008-5
    Cayet, C., Lichtfouse, E., 2001. δ 13C of Plant-Derived n-Alkanes in Soil Particle-Size Fractions. Organic Geochemistry, 32(2): 253–258 doi: 10.1016/S0146-6380(00)00172-8
    Chikaraishi, Y., Naraoka, H., 2006. Carbon and Hydrogen Isotope Variation of Plant Biomarkers in a Plant-Soil System. Chemical Geology, 231(3): 190–202 doi: 10.1016/j.chemgeo.2006.01.026
    Chikaraishi, Y., Naraoka, H., 2007. δ13C and δD Relationships among Three n-Alkyl Compound Classes (n-Alkanoic Acid, n-Alkane and n-Alkanol) of Terrestrial Higher Plants. Organic Geochemistry, 38(2): 198–215 doi: 10.1016/j.orggeochem.2006.10.003
    Cui, J. W., Huang, J. H., Pu, Y., et al., 2008. Comparison of Lipid Compositions between Plant Leaves and Overlying Soil in Heshang Cave, Qingjiang, Hubei Province and Its Significance. Quaternary Sciences, 28(1): 35–42 (in Chinese with English Abstract)
    Deines, P., 1980. The Isotopic Composition of Reduced Organic Carbon. In: Handbook of Environmental Isotope Geochemistry: Volume 1, The Terrestrial Environment, A. Elsevier, Amsterdam. 329–406
    Fierer, N., Schimel, J. P., Holden, P. A., 2003. Variations in Microbial Community Composition through Two Soil Profiles. Soil Biology and Biochemistry, 35(1): 167–176 doi: 10.1016/S0038-0717(02)00251-1
    Grice, K., 1995. Distributions and Stable Carbon Isotopic Compositions of Individual Biological Markers from the Permian Kupferschiefer (Lower Rhine Basin, N.W. Germany): [Dissertation]. University of Bristol, Bristol
    Hernandez, M. E., Mead, R., Peralba, M. C., et al., 2001. Origin and Transport of n-Alkane-2-Ones in a Subtropical Estuary: Potential Biomarkers for Seagrass-Derived Organic Matter. Organic Geochemistry, 32(1): 21–32 doi: 10.1016/S0146-6380(00)00157-1
    Howard, P. J. A., Howard, D. M., Lowe, L. E., 1998. Effects of Tree Species and Soil Physico-chemical Conditions on the Nature of Soil Organic Matter. Soil Biology and Biochemistry, 30(3): 285–297 doi: 10.1016/S0038-0717(97)00138-7
    Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3–4): 221–232
    Huang, X. Y., Cui, J. W., Pu, Y., et al., 2008. Identifying "Free" and "Bound" Lipid Fractions in Stalagmite Samples: An Example from Heshang Cave, Southern China. Applied Geochemistry, 23(9): 2589–2595 doi: 10.1016/j.apgeochem.2008.05.008
    Huang, Y. S., Bol, R., Harkness, D. D., et al., 1996. Post-Glacial Variations in Distributions, 13C and 14C Contents of Aliphatic Hydrocarbons and Bulk Organic Matter in Three Types of British Acid Upland Soils. Organic Geochemistry, 24(3): 273–287 doi: 10.1016/0146-6380(96)00039-3
    Huang, Y. S., Clemens, S. C., Liu, W. G., et al., 2007. Large-Scale Hydrological Change Drove the Late Miocene C4 Plant Expansion in the Himalayan Foreland and Arabian Peninsula. Geology, 35: 531–534 doi: 10.1130/G23666A.1
    Lichtfouse, E., 1995. 13C Labelling of Soil n-Hentriacontane (C31) by Maize Cultivation. Tetrahedron Letters, 36(4): 529–530 doi: 10.1016/0040-4039(94)02305-U
    Lichtfouse, E., 1998. Isotope and Biosynthetic Evidence for the Origin of Long-Chain Aliphatic Lipids in Soils. Naturwissenschaften, 85(2): 76–77 doi: 10.1007/s001140050456
    Lockeart, M. J., van Bergen, P. F., Evershed, R. P., 1997. Variations in the Stable Carbon Isotope Compositions of Individual Lipids from the Leaves of Modern Angiosperms: Implications for the Study of Higher Land Plant-Derived Sedimentary Organic Matters. Organic Geochemistry, 26(1–2): 137–153
    Marseille, F., Disnar, J. R., Guillet, B., et al., 1999. n-Alkanes and Free Fatty Acids in Humus and A1 Horizons of Soils under Beech, Spruce and Grass in the Massif-Central (Mont-Lozere), France. European Journal of Soil Science, 50(3): 433–441 doi: 10.1046/j.1365-2389.1999.00243.x
    Meyers, P. A., Ishiwatari, R., 1993. Lacustrine Organic Geochemistry: An Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments. Organic Geochemistry, 20(7): 867–900 doi: 10.1016/0146-6380(93)90100-P
    Muchembled, J., Grandmougin-Ferjani, A., Sancholle, M., et al., 2000. Effect of Age on the Fatty Acid Content of Blumeria Graminis Conidia. Biochemical Society Transactions, 28: 875–877 doi: 10.1042/bst0280875
    Naafs, D. F. W., van Bergen, P. F., Boogert, S. J., et al., 2004. Solvent-Extractable Lipids in an Acid Andic Forest Soil: Variations with the Depth and Season. Soil Biology and Biochemistry, 36(2): 297–308 doi: 10.1016/j.soilbio.2003.10.005
    Nichols, J. E., Huang, Y. S., 2007. C23–C31 n-Alkan-2-Ones are Biomarkers for the Genus Sphagnum in Freshwater Peatlands. Organic Geochemistry, 38(11): 1972–1976 doi: 10.1016/j.orggeochem.2007.07.002
    Prahl, F. G., Hayes, J. M., Xie, T. M., 1992. An Indicator of Terrigenous Organic Carbon in Washington Coastal Sediments. Limnology and Oceanography, 37(6): 1290–1300 doi: 10.4319/lo.1992.37.6.1290
    Pu, Y., Huang, J. H., Huang, X. Y., et al., 2006. Acyclic Alkanes in the Soil over Heshang Cave, Qingjiang, Hubei Province. Journal of China University of Geosciences, 17(2): 115–120 doi: 10.1016/S1002-0705(06)60015-0
    Řezanka, T., Zlatkin, I. V., Viden, I., et al., 1991. Capillary Gas Chromatography-Mass Spectrometry of Unusual and Very Long-Chain Fatty Acids from Soil Oligotrophic Bacteria. Journal of Chromatography A, 558(1): 215–221 doi: 10.1016/0021-9673(91)80127-3
    Rieley, G., Collie, R. J., Jones, D. M., et al., 1991. Sources of Sedimentary Lipids Deduced from Stable Carbon-Isotope Analyses of Individual Compounds. Nature, 352(6334): 425–427 doi: 10.1038/352425a0
    Rieley, G., Collister, J. W., Stern, B., et al., 1993. Gas Chromatography/Isotope Ratio Mass Spectrometry of Leaf Waxn-Alkanes from Plants of Differing Carbon Dioxide Metabolisms. Rapid Communications in Mass Spectrometry, 7(6): 488–491 doi: 10.1002/rcm.1290070617
    Ries, S. K., Wert, V., Sweeley, C. C., et al., 1977. Triacontanol: A New Naturally Occurring Plant Growth Regulator. Science, 195(4284): 1339–1341 doi: 10.1126/science.195.4284.1339
    Rogge, W. F., Hildemann, L. M., Mazurek, M. A., et al., 1991. Sources of Fine Organic Aerosol, 1: Charbroilers and Meat Cooking Operations. Environmental Science and Technology, 25(6): 1112–1125 doi: 10.1021/es00018a015
    Rommerskirchen, F., Plader, A., Eglinton, G., et al., 2006. Chemotaxonomic Significance of Distribution and Stable Carbon Isotopic Composition of Long-Chain Alkanes and Alkan-1-Ols in C4 Grass Waxes. Organic Geochemistry, 37(10): 1303–1332 doi: 10.1016/j.orggeochem.2005.12.013
    Ruess, L., Häggblom, M. M., García-Zapata, E. J., et al., 2002. Fatty Acids of Fungi and Nematodes-Possible Biomarkers in the Soil Food Chain? Soil Biology and Biochemistry, 34(6): 745–756 doi: 10.1016/S0038-0717(01)00231-0
    Simoneit, B. R. T., 1977. Organic Matter in Eolian Dusts over the Atlantic Ocean. Marine Chemistry, 5(4–6): 443–464
    Simoneit, B. R. T., Mazurek, M. A., Brenner, S., et al., 1979. Organic Geochemistry of Recent Sediments from Guaymas Basin, Gulf of California. Deep-Sea Research, 26(8): 879–889 doi: 10.1016/0198-0149(79)90102-X
    Sinninghe Damsté, J. S., Rijpstra, W. I. C., Schouten, S., et al., 2004. The Occurrence of Hopanoids in Planctomycetes: Implications for the Sedimentary Biomarker Record. Organic Geochemistry, 35(5): 561–566 doi: 10.1016/j.orggeochem.2004.01.013
    Sun, M. Y., Zou, L., Dai, J. H., et al., 2004. Molecular Carbon Isotopic Fractionation of Algal Lipids during Decomposition in Natural Oxic and Anoxic Seawaters. Organic Geochemistry, 35(8): 895–908 doi: 10.1016/j.orggeochem.2004.04.001
    Szafranek, B., Maliñski, E., Nawrot, J., et al., 2001. In Vitro Effects of Cuticular Lipids of Aphids Sitobion avenae, Hyalopterus pruni and Brevicoryne brassicae on Growth and Sporulation of the Paecilomyces fumosoroseus and Beauveria bassiana. Archive for Organic Chemistry, 3: 81–94
    Uemura, H., Ishiwatari, R., 1995. Identification of Unusual 17β(H)-Moret-22(29)-Ene in Lake Sediments. Organic Geochemistry, 23(7): 675–680 doi: 10.1016/0146-6380(95)00036-E
    Volkman, J. K., Farrington, J. W., Gagosian, R. B., et al., 1983. Lipid Composition of Coastal Marine Sediments from the Peru Upwelling Region. Organic Geochemistry, 10: 228–240
    Wiesenberg, G. L. B., Schwarzbauer, J., Schmidt, M. W. I., et al., 2004. Source and Turnover of Organic Matter in Agricultural Soils Derived from n-Alkane/n-Carboxylic Acid Compositions and C-Isotope Signatures. Organic Geochemistry, 35(11–12): 1371–1393
    Winkler, A., Haumaier, L., Zech, W., 2005. Insoluble Alkyl Carbon Components in Soils Derive Mainly from Cutin and Suberin. Organic Geochemistry, 36(4): 519–529 doi: 10.1016/j.orggeochem.2004.11.006
    Xie, S. C., Chen, F. H., Wang, Z. Y., et al., 2002. The Occurrence of a Grassy Vegetation over the Chinese Loess Plateau since the Last Interglacier: The Molecular Fossil Record. Science in China (Ser. D), 45(1): 54–62 doi: 10.1360/02yb9008
    Xie, S. C., Huang, J. H., Wang, H. M., et al., 2005. Distributions of Fatty Acids in a Stalagmite Related to Paleoclimate Change at Qingjiang in Hubei, Southern China. Science in China (Ser. D), 35(3): 246–251 (in Chinese)
    Xie, S. C., Yao, T. D., Kang, S. C., et al., 1999. Climatic and Environmental Implications from Organic Matter in Dasuopu Glacier in Xixiabangma in Qinghai-Tibetan Plateau. Science in China (Ser. D), 42(4): 383–391 doi: 10.1007/BF02882058
    Xie, S. C., Yi, Y., Huang, J. H., et al., 2003a. Lipid Distribution in a Subtropical Southern China Stalagmite as a Record of Soil Ecosystem Response to Paleoclimate Change. Quaternary Research, 60(3): 340–347 doi: 10.1016/j.yqres.2003.07.010
    Xie, S. C., Yi, Y., Liu, Y. Y., et al., 2003b. The Pleistocene Vermicular Red Earth in South China Signaling the Global Climatic Change: The Molecular Fossil Record. Science in China (Ser. D), 46: 1113–1120
    Zhang, Z. H., Zhao, M. X., Eglinton, G., et al., 2006. Leaf Wax Lipids as Paleovegetational and Paleoenvironmental Proxies for the Chinese Loess Plateau over the Last 170 kyr. Quaternary Science Reviews, 25(5–6): 575–594
    Zheng, Y. H., Zhou, W. J., Meyers, P. A., et al., 2007. Lipid Biomarkers in the Zoige-Hongyuan Peat Deposit: Indicators of Holocene Climate Changes in West China. Organic Geochemistry, 38(11): 1927–1940 doi: 10.1016/j.orggeochem.2007.06.012
    Zhou, W., Xie, S., Meyers, P. A., et al., 2005. Reconstruction of Late Glacial and Holocene Climate Evolution in Southern China from Geolipids and Pollen in the Dingnan Peat Sequence. Organic Geochemistry, 36(9): 1272–1284 doi: 10.1016/j.orggeochem.2005.04.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(794) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return