Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 3
Jun 2011
Turn off MathJax
Article Contents
Tenger, Kai Hu, Qingqiang Meng, Juan Huang, Xiaodong FU, Xiaomin Xie, Yunfeng Yang, Changlin Gao. Formation Mechanism of High Quality Marine Source Rocks—Coupled Control Mechanism of Geological Environment and Organism Evolution. Journal of Earth Science, 2011, 22(3): 326-339. doi: 10.1007/s12583-011-0185-6
Citation: Tenger, Kai Hu, Qingqiang Meng, Juan Huang, Xiaodong FU, Xiaomin Xie, Yunfeng Yang, Changlin Gao. Formation Mechanism of High Quality Marine Source Rocks—Coupled Control Mechanism of Geological Environment and Organism Evolution. Journal of Earth Science, 2011, 22(3): 326-339. doi: 10.1007/s12583-011-0185-6

Formation Mechanism of High Quality Marine Source Rocks—Coupled Control Mechanism of Geological Environment and Organism Evolution

doi: 10.1007/s12583-011-0185-6
Funds:

the National Natural Science Foundation of China 40839910

State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) 113101

More Information
  • Corresponding author: Tenger, tenger67@sina.com
  • Received Date: 10 May 2009
  • Accepted Date: 13 Jul 2009
  • Publish Date: 01 Jun 2011
  • High quality marine source rock (HQMSR) is the key prerequisite for medium to large hydrocarbon accumulations. However, the forming mechanism remains unclear. On the basis of the investigation for the geodynamic setting of the Middle-Upper Yangtze during the Early Cambrian in different spatial scales and the analysis of trace elements, the main controlling factors of the development of high quality marine source rock are discussed, with specific consideration of the burial rate of the organic matter. The formation of high quality marine source rocks is suggested to be the result of a coordinated development and the interaction between geological environments and organism evolution during the major geological transition periods. We perceived that the burial rate of organic matter was influenced by the primary productivity and its burial conditions. The abundance of autogenetic molybdenum gained directly by the chemical speciation analysis of rocks could be used as a proxy for the burial organic matter. The burial rate of autogenetic molybdenum and the sedimentary organics in modern marine environments could be used to estimate the sedimentary organics in ancient environments effectively.

     

  • loading
  • Bian, L. Z., Zhang, S. C., Liang, D. G., et al., 2003. Fruit-Like Fossils of Ancient Seaweeds from Late Ordovician, Central Area of the Tarim Basin and the Characteristics of Bioprecursors of Tazhong Oil and Gas Field. Acta Micropalaeontologica Sinica, 20(1): 89–96 (in Chinese with English Abstract) http://europepmc.org/abstract/CBA/543990
    Bralower, T. J., Thierstein, H. R., 1984. Low Productivity and Slow Deepwater Circulation in Mid-Cretaceous. Geology, 12(10): 614–618 doi: 10.1130/0091-7613(1984)12<614:LPASDC>2.0.CO;2
    Cai, J. G., Bao, Y. J., Yang, S. Y., et al., 2007. Research on Preservation and Enrichment Mechanisms of Organic Matter in Muddy Sediment and Mudstone. Science in China (Series D), 37(2): 234–243 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JDXK200702010.htm
    Chen, D. F., Chen, G. Q., Chen, X. P., 2003. Sea-Level Changes and Hydrothermal Sedimentary Mineralization of Large-Superlarge Ore Deposits among Sinian to Triassic in South China. Science in China (Series D), 32(S2): 120–126 (in Chinese) doi: 10.1360%2F03dz9035
    Cheng, J. F., Zhang, S. C., Sun, S. L., et al., 2006. Main Factors Influencing Marine Carbonate Source Rock Formation. Acta Geologica Sinica, 80(3): 467–472 (in Chinese with English Abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200603021&dbcode=CJFD&year=2006&dflag=pdfdown
    Chester, R., 2003. Marine Geochemistry. 2nd ed. . Blackwell Publishing, London. 373–378
    Creaney, S., Passey, Q. R., 1993. Recurring Patterns of Total Organic Carbon and Source Rock Quality within a Sequence Stratigraphic Framework. AAPG Bulletin, 77: 386–401 http://aapgbull.geoscienceworld.org/content/77/3/386
    Dai, J. X., Zou, C. N., Tao, S. Z., et al., 2007. Formation Conditions and Main Controlling Factors of Large Gas Fields in China. Natural Gas Geoscience, 18(4): 473–484 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200704001.htm
    Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. AAPG Bulletin, 64(8): 1179–1209 http://www.sciencedirect.com/science/article/pii/0146638080900170
    Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Palaeoproductivity. Palaeoceanography, 7(2): 163–181 doi: 10.1029/92PA00181
    Galimov, Э. M., 1999. Global Variation Characteristics of Carbon Isotopic Composition of the Biosphere. Translated by Li, H. G., 2002. Natural Gas Geoscience, 13(1): 1–17 (in Chinese with English Abstract)
    Gao, C. L., Huang, Z. G., Ye, D. Y., et al., 2005. Three Palaeo-Oceans in the Early Palaeozoic and Their Control to Basins in China. Petroleum Geology & Experiment, 27(5): 439–448 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200502001.htm
    Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science, 252(5011): 1409–1412 doi: 10.1126/science.252.5011.1409
    Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342–1346 doi: 10.1126/science.281.5381.1342
    Hou, X. G., Bergstrom, J., Wang, H. F., et al., 1999. The Chengjiang Fauna-Exceptionally Well Preserved Animals from 530 Millions Years ago. Yunnan Science and Technology Press, Kunming. 1–170 (in Chinese with English Abstract)
    Ibach, L. E. J., 1982. Relationship between Sedimentation Rate and Total Organic Carbon Content in Ancient Marine Sediments. AAPG Bulletin, 66: 170–188
    Jiang, Y. H., Yue, W. Z., Ye, Z. Z., 1994. Anoxic Event, Black Shales and Related Mineral Resource: Taking the Lower Palaeozoic in Southern China as Example. Geological Exploration for Non-ferrous Metals, 3(5): 272–278 (in Chinese with English Abstract)
    Jin, Z. J., 2005. Particularity of Petroleum Exploration on Marine Carbonate Strata in China Sedimentary Basins. Earth Science Frontiers, 12(3): 15–22 (in Chinese with English Abstract) http://www.researchgate.net/publication/284025232_Particularity_of_petroleum_exploration_on_marine_carbonate_strata_in_China_sedimentary_basins
    Knoll, A. H., Carroll, S. B., 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 284(5423): 2129–2137 doi: 10.1126/science.284.5423.2129
    Li, S. R., Gao, Z. M., 1995. REE Characteristics of Black Rock Series of the Lower Cambrian Niutitang Formation in Hunan and Guizhou Provinces, China, with a Discussion on the REE Patterns in Marine Hydrothermal Sediments. Acta Mineralogica Sinica, 15(2): 225–229 (in Chinese with English Abstract)
    Li, S. R., Gao, Z. M., 2000. Source Tracing of Noble Metal Elements in Lower Cambrian Black Rock Series of Guizhou-Hunan Provinces, China. Science in China (Series D), 30(2): 169–174 (in Chinese)
    Liang, D. G., Guo, T. L., Chen, J. P., et al., 2008. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1): Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleum Geology, 13(2): 1–16 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200802001.htm
    Liu, B. J., Xu, X. S., Pan, X. N., et al., 1993. Crustal Evolution and Metallogenic System in the Southern China Palaeocontinent. Science Press, Beijing. 9–134 (in Chinese with English Abstract)
    Lü, B. Q., Wang, H. G., Hu, W. S., et al., 2004. Relationship between Palaeozoic Upwelling Facies and Hydrocarbon in Southeastern Marginal Yangtze Block. Marine Geology & Quaternary Geology, 24(4): 29–35 (in Chinese with English Abstract) http://www.researchgate.net/publication/283745966_Relationship_between_Paleozoic_upwelling_facies_and_hydrocarbon_in_southeastern_marginal_Yangtze_Block
    Ma, Y. S., Cai, X. Y., Guo, T. L., 2007. The Controlling Factors of Oil and Gas Charging and Accumulation of Puguang Gas Field in the Sichuan Basin. Chinese Science Bulletin, 52(Suppl. 1): 149–155 (in Chinese)
    Majone, M., Massanisso, P., Ramadori, R., 1998. Comparison of Carbon Storage under Aerobic and Anoxic Conditions. Water Science and Technology, 38(8–9): 77–84 http://wst.iwaponline.com/content/38/8-9/77
    Marchig, V., Gundlach, H., Moller, P., et al., 1982. Some Geochemical Indicators of Discrimination between Diagenetic and Hydrothermal Metalliferous Sediments. Marine Geology, 50(3): 241–256 doi: 10.1016/0025-3227(82)90141-4
    McManus, J., Berelson, W. M., Severmann, S., et al., 2006. Molybdenum and Uranium Geochemistry in Continental Margin Sediments: Palaeoproxy Potential. Geochimica et Cosmochimica Acta, 70(18): 4643–4662 doi: 10.1016/j.gca.2006.06.1564
    Mongenot, T., Tribovillard, N. P., Desprairies, A., et al., 1996. Trace Elements as Palaeoenvironmental Markers in Strongly Mature Hydrocarbon Source Rocks: The Cretaceous La Luna Formation of Venezuela. Sediment. Geol. , 103(1–2): 23–27 http://www.researchgate.net/profile/Nicolas_Tribovillard/publication/260955300_Trace_elements_as_palaeoenvironmental_markers_in_strongly_mature_hydrocarbon_source_rocks_The_Cretaceous_La_Luna_Formation_of_Venezuela/links/0f317532ff40636970000000.pdf
    Moores, E. M., 1991. Southwest U.S. -East Antarctic (SWEAT) Connection: A Hypothesis. Geology, 19: 425–428 doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2
    Müller, P. J., Suess, E., 1979. Productivity, Sedimentation Rate and Sedimentary Organic Matter in the Ocean: Organic Carbon Preservation. Deep-Sea Research, 26(12): 1347–1362 doi: 10.1016/0198-0149(79)90003-7
    Pan, J. Y., Ma, D. S., Xia, F., et al., 2005. Study on Nickel and Molybdenum Minerals in Ni-Mo Sulfide Layer of the Lower Cambrian Black Rock Series, Northwestern Hunan. Acta Mineralogica Sinica, 25(3): 283–288 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200503012.htm
    Pedersen, T. F., Calvert, S. E., 1990. Anoxia vs Productivity—What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks. AAPG Bulletin, 74: 454–466 http://archives.datapages.com/data/meta/bulletns/1990-91/images/pg/00750003/0000/04990_firstpage.pdf
    Rong, J. Y., 2006. Originations, Radiations and Biodiversity Changes—Evidence from Chinese Fossil Record. Science Press, Beijing. 1–962 (in Chinese with English Abstract)
    Stanley, S. M., 1973. An Ecological Theory for the Sudden Origin of Multicellular Life in the Late Precambrian. Proceedings of the National Academy of Sciences of the United States of America, 70(5): 1486–1489 doi: 10.1073/pnas.70.5.1486
    Tenger, Gao, C. L., Hu, K., et al., 2007. High Quality Source Rocks of Lower Combination in the Northern Upper-Yangtze Area and Their Hydrocarbon Potential. Natural Gas Geoscience, 18(2): 254–259 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200702018
    Tenger, Hu, C. L., Hu, K., et al., 2006a. High-Quality Source Rocks in the Lower Combination in Southeast Upper-Yangtze Area and Their Hydrocarbon Generating Potential. Petroleum Geology & Experiment, 28(4): 359–365 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=SYSD200604009&dbcode=CJFD&year=2006&dflag=pdfdown
    Tenger, Liu, W. H., Xu, Y. C., et al., 2004. Organic Carbon Isotope Record in Marine Sediment and Its Environmental Significance—An Example from Ordos Basin, NW China. Petroleum Exploration and Development, 31(5): 11–16 (in Chinese with English Abstract) http://www.researchgate.net/publication/296611603_Organic_carbon_isotope_record_in_marine_sediment_and_its_environmental_significance_-_An_example_from_Ordos_basin_NW_China
    Tenger, Liu, W. H., Xu, Y. C., et al., 2006b. Comprehensive Geochemical Identification of Highly Evolved Marine Carbonate Rocks as Hydrocarbon-Source Rocks as Exemplified by the Ordos Basin. Science in China (Series D), 49(4): 384–396 doi: 10.1007/s11430-006-0384-7
    Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence—A New Approach to Oil and Gas Exploration. Springer-Verlag Berlin Heidelberg, New York. 3-66
    Ye, L. J., 1998. Biomineralization and Its Geologic Background. Oceanological Publishing House, Beijing. 335–352 (in Chinese with English Abstract)
    Zhang, S. C., Zhang, B. M., Bian, L. Z., et al., 2005. Development Constraints of Marine Source Rocks in China. Earth Science Frontiers, 12(3): 39–48 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200503006.htm
    Zhang, Y. C., 1997. The Analysis of Oil-Gas-Bearing Basins in China. Nanjing University Press, Nanjing. 1–450 (in Chinese with English Abstract)
    Zheng, Y., Anderson, R. F., Geen, A. V., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165–4178 doi: 10.1016/S0016-7037(00)00495-6
    Zhu, X., Chen, H. J., Shun, Z. C., et al., 1983. The Mesozoic-Cenozoic Tectonics and Petroliferous Basins of China. Acta Geologica Sinica, 57(3): 235–242 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(696) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return